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Abstract—The widely used energy features extracted from the
wavelet domain can effectively represent the common image tex-
tures. However, they are not robust to the rotated textures. In this
paper, we propose a multiscale rotation-invariant representation
(MRIR) of textures by using multiscale sampling. Particularly, a
multiscale wavelet transform is used to decompose the magnitude
pattern (MP) mapping of a texture. Furthermore, the sign
pattern (SP) mapping of a texture is used as a step function,
which is further sampled and used to fit the wavelet subbands
of the MP mapping for computing the sampled directional
mean vectors (SDMVs) of the subbands. Moreover, we construct
frequency vectors (FVs) of those SP mappings for capturing
the structural information of textures. Finally, we can obtain
the MRIR vector of an image texture by concatenating those
SDMVs and FVs for texture classification. The comprehensive
experimental results demonstrate that our proposed approach
outperforms six representative texture classification methods.

Keywords—Texture representation, wavelet transform, rotation
invariance, energy feature, image classification.

I. I NTRODUCTION

I MAGE analysis is an important area of computer vision
and pattern recognition. Due to that texture is a primary

characteristic of images, a variety of texture representation
methods have been proposed in last three decades, which can
be roughly categorized into spacial domain-based [1]-[7] and
transform-based [8]-[13] methods.

The spacial domain based method mainly uses the local
information of textures to construct image features [14]-[18].
Ojala et al. [19] used the local binary pattern (LBP) computed
by encoding the differences between the center pixel and its
neighbors in a patch as texton for texture classification. Guo et
al. [20] gave a completed LBP (CLBP) method by combining
the sign and magnitude of neighboring differences and the
center pixels for texture representation. Qi et al. [21] used
rotation-invariant co-occurrence LBP for texture classification.
Although the above methods considered the multiscale infor-
mation by changing the scale of a local neighborhood, they
neglect the directional information of textures.
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In the transform-based methods, directional multiscale tran-
forms, such as wavelets [22]-[25], shearlets [26], and con-
tourlets [27]-[29], are widely utilized for representing an image
texture. Generally speaking, statistical models are employed
for modeling the transformed coefficients to construct effective
texture descriptors. The usually used models include bit-plane
model [16], local energy histograms [22], Poisson mixture
model [27], linear regression model [26] and so on. Besides,
nonnegative matrix factorization can be used for constructing
compact texture representation [23], [30]. Although those
transform-based methods effectively represent the common
image texture, they are not robust to the rotated textures.

Motivated by the above problems, we in this paper propose a
multiscale rotation-invariant representation (MRIR) of textures
by using multiscale sampling. Particularly, a multiscale wavelet
transform is used to decompose the magnitude pattern (MP)
mapping of a texture. We further compute the sign pattern
(SP) mapping of a texture, and sample it for matching the
wavelet subbands of the MP mappings to compute the sampled
directional mean vectors (SDMVs) of each wavelet subband.
In addition, frequency vectors (FVs) of those SP mappings
are also constructed for capturing the structural information
of textures. Furthermore, the texture information at a given
scale can be described by three SDMVs and a FV. Therefore,
a texture can be represented by a concatenation of the features
at all scales consisting of the above SDMVs and FVs.

Three contributions are made in this paper. First, we pro-
pose a multiscale sampling scheme to construct a matching
template. As a two-dimensional step function, the matching
template can be used to compute the component energies of
each wavelet subband, which can capture more information
than the traditional energy extraction method. Second, we
build a multiscale rotation-invariant representation to describe
textures, which can be effectively used for performing the
classification of the rotational textures. Finally, we construct a
rotated Brodatz dataset for evaluating our proposed method ac-
cording to the original Brodatz database. Experimental results
on Brodatz, KTH-TIPS2-a, and Outex databases reveal that
our proposed method outperforms the representative methods.

The remainder of this paper is organized as follows. Section
II introduces the proposed multiscale rotation-invariant texture
representation framework. Experimental results in Section III
demonstrate the effectiveness of our proposed method. Finally,
we briefly conclude in Section IV.

II. M ULTISCALE ROTATION-INVARIANT TEXTURE
REPRESENTATIONFRAMEWORK

Rotation invariance is an important characteristic in image
analysis. To alleviate the limitation of transform-based method
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in terms of image rotation, we first perform a rotation-invariant
processing to a texture image, followed by a wavelet transform.
We then construct the MRIR feature of a texture image.

A. Multiscale Sampling

1) Wavelet Based Multiscale Decomposition of Magnitude
Pattern Mapping: For a pixel in the given texture image, its
magnitude pattern (MP) is defined as

MP =

P
∑

i=1

|xi − xc|. (1)

wherexc is the current pixel andxi is its i-th neighbor of the
P ones which are equally distributed on a circle with radiusR.
The neighbors not located in the image grid can be computed
by bilinear interpolation. According to equation (1), values in
the MP mapping are rotation-invariant, the reason is that a
pixel is described by the sum of magnitudes of differences
between the pixel and its neighbors, which is not relevant to
the neighboring positions and gray levels [19].

To use the multiscale information of texture images, mul-
tiscale wavelet transform with the Daubechies 8 (db8) filter
bank is thus adopted to decompose the two-dimensional MP
mapping. For a L-scale wavelet decomposition to the MP
mapping,3 ∗ L high-pass subbands{Wij}i=1,...,L,j=1,2,3 and
a low-pass subbandW0 can be obtained. It is obvious that
we can get3 ∗ L + 1 subbands of the MP mapping. Note
that those obtained subbands are rotation-invariant in terms of
image rotations

2) Sampling of Sign Pattern Mapping: For the pixel, its sign
pattern (SP) is defined as

SP =
P
∑

i=1

s(xi − xc), (2)

wheres(x) is a sign function that is defined as

s(x) =

{

1, x ≥ 0
0, x < 0

. (3)

Similarly, values in the SP mapping are also rotation-invariant
according to equation (2) [19], [20].

Note that pixels of a texture image are represented by
values in the MP and SP mappings after the rotation-invariant
processing. Obviously, the magnitude information of pixels
is incorporated in the MP mapping. While the SP mapping
contained the sign information of pixels, which composes of
discrete values and hasP + 1 pattern classes.

In order to use the SP mapping as a step function to split
coefficients in a subband at different scales, the downsampling
process corresponding to wavelet decomposition is thus done
for the SP mapping to generateL distributions of values of
the step function. Thei-th scale distribution is

T i = T i−1(1 : 2 : end, 1 : 2 : end), i = 1, . . . , L, (4)

whereT 0 is the SP mapping andT i−1(1 : 2 : end, 1 : 2 : end)
is a down-sampling process of every other line and very other
column. For clarity, theL+1 step function value distributions
are denoted as{T i}i=0,...,L.

B. Multiscale Rotation-Invariant Representation

It is obvious that a subband at thei-th sclae can be split
into P + 1 partitions by the step function value distribution
T i. For clarity, all partitions of those subbands are denoted as
{Sk

ij}
k=1,...,P+1
i=1,...,L,j=1,2,3. HereSk

ij is thek-th partition of thej-th
M ×N subband at thei-th scale, which is defined as

Sk
ij =

⋃

x=1,...,M
y=1,...,N
T i(x,y)=k

Wij(x, y), k ∈ [0, P ] (5)

whereWij(x, y) andT i(x, y) are the subband coefficient and
the step function value at the position(x, y) of Wij and T i

respectively. Its mean value,ekij , is defined as

ekij =
1

|Sk
ij |

|Sk
ij |

∑

τ=1

|zτ |. (6)

Note that theekij can be seen as the component energy of the
wavelet subbandSk

ij . In this paper, the value ofekij is used
as thek-th element of the sampled directional mean vector
(SDMV). Thus, the SDMV of thej-th subband at thei-th
scale can be represented by

SDMVij = (e0ij , e
1
ij , . . . , e

P
ij). (7)

That is to say, the SDMV consisting of component energies
of the wavelet subband. This is different from the commonly
used energy feature extraction method in which only a energy
feature is extracted to represent a wavelet subband. So our
proposed SDMV can capture more information of a given
wavelet subband.

In order to enhance the discrimination and rotation-
invariance of thei-th scale SDMV, a frequency vector (FV),
FV i, of the sampledM × N SP mapping,T i, is also
constructed. Itsk-th element,Bk, is

Bk =

M
∑

x=1

N
∑

y=1

f(T i(x, y)− k), k ∈ [0, P ] (8)

wheref(a) = 1 whena = 0, otherwisef(a) = 0.

Fig. 1. The extraction process of our proposed MRIR consisting of the
sampled directional mean vectors (SDMVs) and the frequency vectors (FVs)
with L = 2.

Fig. 1 shows the extraction process of our proposed MRIR
consisting of SDMVs and FVs. For clarity, we only show
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the two scale decomposition and sampling. As we can see
from Fig. 1, a texture is first decomposed into the MP and SP
mappings, then wavelet transform and sampling are done for
them respectively. Furthermore, SDMVs of subbands are built
by using those matching templates. Finally, FVs of those SP
mappings are also extracted at different scales.

Thus, the rotation-invariant representation (RIR) of thel-th
scale is defined as

RIRi = (SDMV i, FV i), (9)

whereSDMV i = (SDMVi1, SDMVi2, SDMVi3) is a col-
lection of SDMVs of subbands at thei-th scale. ForW0, its
SDMV is also useful in capturing texture information [22],
which is computed and denoted asSDMV 0 for uniformity. In
order to avoid information redundancy, the frequency vector of
the SP mapping denoted asFV 0 is constructed forW0. Thus
the low-pass RIR feature is

RIR0 = (SDMV 0, FV 0). (10)

Finally, a multiscale rotation-invariant representation (M-
RIR) contained all subbands and texture structures at different
scales is constructed by

MRIR = (RIR0, RIR1, . . . , RIRL). (11)

Once we obtain the MRIRs of all texture samples, we can use
the minimum distance classifier for classification, which will
be described in detail in the following section.

III. E XPERIMENTS

In this section, comprehensive experiments are conducted
to demonstrate the effectiveness of our proposed texture rep-
resentation method. In addition, average classification accurate
rate (ACAR) of ten random splits of the training and testing
samples of a dataset is used as its final experimental result.

A. Dissimilarity Measurement

In this paper, nearest neighbor classifier with Chi-square dis-
tance is selected for dissimilarity measurement. ForMRIR1

andMRIR2 , the Chi-square distance is

D(MRIR1,MRIR2) =

A
∑

i=1

(B1
i −B2

i )
2

B1
i +B2

i

, (12)

whereB1
i andB2

i are thei-th element ofA ones in the two
features respectively. In experimental phase, a test sample is
classified to the class to which the training sample obtaining
the minimum distance belongs.

B. Datasets

1) Brodatz-based Texture Datasets: Considering Brodatz
album is a widely-used benchmark, we first test our proposed
method on three texture datasets obtained from the original
Brodatz texture dataset. These three datasets was used in
[26]. For simplicity, they are denoted as Set-1, Set-2, and
Set-3 respectively. Forty images are contained in Set-1. Set-2

composes of forty images in Set-1 and another twenty images.
The largest Set-3 is the whole Brodatz database. The512×512
centre patch of each image in the three datasets is firstly
cropped. Subsequently, each patch is divided into16 128×128
samples.

To verify its robustness on the rotated textures, we further
construct three rotated Brodatz texture datasets by respectively
rotating three original Brodatz texture datasets in terms of
nine angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and90◦). For
clarity, we denote these three new datasets as Set-4, Set-5, and
Set-6. And then the320× 320 centre patches of those rotated
images are cropped. Finally, each patch is divided into16
80×80 samples. In the experimental phase, for those Brodatz-
based texture datasets, half samples randomly selected from
each class are used for training and the rest is used for testing.

2) The other Datasets: The KTH-TIPS2-a dataset [1], [4],
[18] composes of 11 texture classes; each class contains four
samples. According to the experimental protocol utilized by
previous studies, we also use one sample of each class as
training set and the rest is used for testing set.

The OutexTC 00012 suite [1], [4] of Outex, denoted
as Outex in the following, consists of 24 texture classes
and 9120 texture samples under different rotation angles
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and90◦) and illumination
conditions (inca, t184, and horizon). In the experimental stage,
the training set contains samples with rotation angle0◦, and
each test set has the other different rotation angles.

C. Parameter Estimation

In our method, two parameters, the wavelet decomposition
scale L and the number of neighbors P around a pixel, need to
be estimated. Here, two estimation experiments with different
training samples, Ntr, are conducted to get the optimal values
of L and P on Set-1 and Set-4 respectively. Relationships
between ACARs and Ntr on the two datasets are shown in Fig.
2. The first row shows the experimental results with different L
values when P=8. Obviously, the best ACARs can be achieved
when L=1. The second row gives the experimental results
with different P values when L=1. In this conditions, the best
ACARs can be obtained when P=10. Thus L=1 and P=10 are
used to our method in the absence of other instructions.

D. Experimental Results on Brodatz Database

To test the discrimination of our proposed method on
original Brodatz database, experiments on Set-1, Set-2, and
Set-3 are performed separately. ACARs of the representative
methods LRS-MD [26], PMC-BC [27], CLBP [20], MLEP
[18], Cov-LBPD [4], scLBP [1] and our proposed MRIR are
given in Table I. From Table I, it can be seen that MRIR is
marginally outperforms the six methods on the three original
Brodatz datasets, and the standard deviations of MRIR are a
few less than the six methods on the three datasets respectively.
In addition, ACARs of partial features (denoted as MRIR-FV
and MRIR-SDMV) of MRIR show that the discrimination is
enhanced by concatenating them together. Thus, our MRIR
feature can describe image textures well in dealing with those
un-rotated texture images. In the next subsection, experiments
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Fig. 2. Relationships between ACARs and Ntr on Set-1 and Set-4. (a)
Experimental results on Set-1, (b) experimental results on Set-4.

are done to evaluate our MRIR feature for classifying rotated
texture images.

TABLE I. AVERAGE CLASSIFICATION ACCURACY RATES (ACARS,
%) OF THE COMPARATIVE METHODSLRS-MD, PMC-BC, CLBP, MLEP,

COV-LBPD, SCLBP AND OUR MRIR ON SET-1, SET-2, AND SET-3.

Methods Set-1 Set-2 Set-3
LRS-MD [26] 99.66±0.54 99.04±0.60 88.38±1.28
PMC-BC [27] 98.13±0.85 98.42±0.59 86.01±1.93
CLBP [20] 97.41±0.99 95.90±0.94 76.90±1.73
MLEP [18] 97.73±0.75 95.97±0.82 76.92±1.62
Cov-LBPD [4] 98.01±0.84 96.34±0.42 78.35±1.43
scLBP [1] 99.29±0.73 98.31±0.58 83.34±1.53
MRIR-FV 97.01±0.92 93.50±0.14 75.20±1.87
MRIR-SDMV 99.11±0.49 97.92±0.04 79.00±1.33
MRIR 99.75±0.32 99.52±0.28 88.60±1.23

To further evaluate the discrimination of MRIR in dealing
with rotated texture images, another three experiments on Set-
4, Set-5, and Set-6 are done. ACARs of the comparative
methods and MRIR are shown in Table II. From Table II,
it is obvious that ACARs of MRIR outperform the six rep-
resentative methods. The better experimental results 94.50%
on Set-4, 91.78% on Set-5, and 69.85% on Set-6 are obtained
by our MRIR. The standard deviations of MRIR are also less
than the three methods except for standard deviations of CLBP
on Set-5 and Set-6. Experimental results on those rotated
datasets demonstrate that rotation invariance is incorporated
in our MRIR feature and the discrimination of the wavelet
based feature is enhanced.

From comparisons between Table I and Table II, it can
be seen that ACARs of LRS-MD and PMC-BC deteriorate
rapidly, which reveals that the transform-based method is
sensitive to image rotations. For CLBP, MLEP, Cov-LBPD,
and scLBP, their experimental results on the two class datasets
have a small change, which suggests that the spacial domain
based method is rotation-invariant. Apparently, our MRIR can
get the better classification results on the two class datasets,
the reason is that the rotation invariance is contained in our

TABLE II. A VERAGE CLASSIFICATION ACCURACY RATES (ACARS,
%) OF THE COMPARATIVE METHODSLRS-MD, PMC-BC, CLBP, MLEP,
COV-LBPD, SCLBP AND OUR PROPOSEDMRIR ON SET-4, SET-5, AND

SET-6.

Methods Set-4 Set-5 Set-6
LRS-MD [26] 64.82±2.29 58.11±2.61 37.59±2.02
PMC-BC [27] 74.51±0.79 71.28±0.94 48.32±1.23
CLBP [20] 81.77±0.99 76.49±0.82 52.71±0.64
MLEP [18] 83.96±0.71 78.53±0.95 54.72±1.34
Cov-LBPD [4] 85.53±0.64 80.96±1.43 59.21±1.79
scLBP [1] 91.62±0.63 89.33±1.00 65.75±1.31
MRIR-FV 89.41±0.69 87.90±0.94 58.40±1.13
MRIR-SDMV 90.77±0.59 89.01±1.01 63.32±1.30
MRIR 94.50±0.59 91.78±0.89 69.85±1.11

MRIR.

E. Experimental Results on The Other Datasets

In order to extensively compare our MRIR with those
representative methods, experiments on KTH-TIPS2-a and
Outex datasets are conducted. Experimental results of the
representative methods and our MRIRs are shown in Table III.
Obviously, results of our MRIR on the two challenging datasets
marginally outperform the representative methods according to
Table III. Those experimental results further demonstrate the
effectiveness of our proposed method in dealing with texture
image classification under rotation condition.

TABLE III. E XPERIMENTAL RESULTS(%) OF THE COMPARATIVE

METHODS LRS-MD, PMC-BC, CLBP, MLEP, COV-LBPD, SCLBP AND
OUR PROPOSEDMRIR ON KTH-TIPS2-A AND OUTEX.

Methods KTH-TIPS2-a Outex
LRS-MD [26] 58.39 51.33
PMC-BC [27] 62.74 59.06
CLBP [20] 66.58 95.37
MLEP [18] 75.57 97.32
Cov-LBPD [4] 74.86 96.70
scLBP [1] 78.39 98.15
MRIR-FV 63.75 92.03
MRIR-SDMV 72.81 97.54
MRIR 78.52 98.28

In summary, experimental results on the three widely used
Brodatz, KTH-TIPS2-a, and Outex databases reveal that our
proposed MRIR method outperforms the six representative
methods.

IV. CONCLUSION

In this paper, we investigate the rotation-invariant texture
representation problem, and propose a multiscale rotation-
invariant representation of textures based on multiscale sam-
pling for classification. To this end, we first construct the
matching template to capture component energies of each
wavelet subband of magnitude pattern (MP) mapping of a
texture. These component energies are further used for building
the sampled directional mean vector(SDMV). Moreover, the
frequency vector (FV) is built to capture the structural infor-
mation of textures. Finally, the concatenation of those SDMVs
and FVs is used as a texture feature, and comprehensive exper-
iments testify that our proposed method can get a satisfactory
classification performance.
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