
Novel adaptive hybrid rule network based on TS fuzzy rules using
an improved quantum-behaved particle swarm optimization

Lin Lin n, Feng Guo, Xiaolong Xie, Bin Luo
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China

a r t i c l e i n f o

Article history:
Received 7 November 2013
Received in revised form
11 May 2014
Accepted 13 July 2014
Communicated by A.M. Alimi
Available online 4 August 2014

Keywords:
Adaptive hybrid rule network
Opinion leader-based quantum-behaved
particle swarm optimization
Composed particle
Chaotic time series prediction

a b s t r a c t

A novel adaptive hybrid rule network (AHRN) based on Takagi–Sugeno (TS) fuzzy rules is proposed to
resolve chaotic system prediction problems. This model automatically adjusts its structure and
dynamically establishes rule sets (apart from statically) to adapt in learning new samples. For the
learning process, the opinion leader-based quantum-behaved particle swarm optimization (OLB-QPSO)
algorithm is proposed. This algorithm uses composed particles generated according to AHRN and
emphasizes the importance of the composed particle with the highest fitness based on a social
communication law. To improve the chance of finding the best global solution, the movement of the
composed particle is affected by the subparticles as inner factors and by the swarm as outer factor.

Three chaotic time series experiments are performed to validate the proposed method. Results show
that AHRN that uses the OLB-QPSO with composed particles can effectively provide the appropriate rules
to search for solutions in a wide space and significantly improve the probability of obtaining the optimal
global solution.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy theories have been widely applied in many fields, such as
computer-aided design [1–4], system identification [5], automatic
control [6,7], pattern recognition [6], data mining [8], and predic-
tion [9], because of the ability to handle the complex problems
with strong nonlinearity or high degree of uncertainty. Therefore,
the fuzzy model has been proposed and proven as powerful in
complex system modeling [10]. Two kinds of fuzzy models
currently exist: the Mamdani [11] and the Takagi–Sugeno (TS)
fuzzy models [5]. To date, the use of the TS fuzzy model to predict
chaotic time series problems has gained increasing attention, and
research on building the TS fuzzy rule has become a key point in
practical applications.

Formulating fundamental TS rules is based on structure and
parameter identification. The structure used to determine the
antecedent and the consequent parts of a rule can be identified
through heuristics [5], neural networks [12], fuzzy clustering
methods [13], and so on. Meanwhile, the existing parameters in
the rule can be identified through the least-square method [5],
gradient descent [14], genetic algorithm (GA) [15], and so on. The
structure and parameters, as well as the number of rules can
influence prediction. An improper number of rules can neither

improve the accuracy nor clear the explanation; thus, classic
methods, such as increasing or merging clusters and mountain
or subtractive clustering, are used. Simultaneously, new methods
have also been proposed to optimize the model and improve the
prediction performance, such as the TS-group method of data
handling algorithm [16], the incremental smooth support vector
regression algorithm [17], and the habitually linear evolving TS
fuzzy model [18]. However, these methods still cannot guarantee
that the accurate partition of the input samples and the correct
number of rules are employed to solve chaotic time series predic-
tion problems. Therefore, a novel rule-based fuzzy model, called
adaptive hybrid rule network (AHRN) is proposed in this study to
establish the solution model. AHRN is mainly established by nodes
that represent fuzzy subspaces (i.e., different clusters of input
data) and that are linked to others to generate rules. In the
learning process, AHRN can automatically partition input samples
according to their characteristics; thus, the structure can be
updated adaptively. Meanwhile, the dynamic rule selection
mechanism (DRSM) is used to establish the rule set according to
the number of rules (RL) and rule similarity (RS). Through this
mechanism, AHRN can build the most suitable set of rules.
However, implementing AHRN is another key issue. Experience
proves that an evolution algorithm is a better choice after several
experiments that implement different kinds of algorithms have
been performed in this research.

An evolutionary algorithm is a self-organizing and adaptive
artificial intelligence technology that solves problems by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.07.033
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: waiwaiyl@163.com (L. Lin).

Neurocomputing 149 (2015) 1003–1013

Downloaded from http://www.elearnica.ir

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.07.033
http://dx.doi.org/10.1016/j.neucom.2014.07.033
http://dx.doi.org/10.1016/j.neucom.2014.07.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.033&domain=pdf
mailto:waiwaiyl@163.com
http://dx.doi.org/10.1016/j.neucom.2014.07.033


simulating a biological evolution process and mechanism. GA [19],
ant colony optimization [20], and particle swarm optimization
(PSO) [21,22] are typical examples of evolutionary algorithm. PSO
has better computational efficiency, i.e., it requires less memory
space and lesser CPU speed, and less number of parameters to
adjust [23]. As research develops further, new algorithms based on
standard PSO have been proposed, such as elite PSO with mutation
[24], group decision PSO [25], multi-grouped PSO [26], optimiza-
tion algorithm based on the TS fuzzy model of self-adaptive
disturbed PSO and neural network [27], and quantum-behaved
PSO (QPSO) [28]. QPSO has lesser parameters to control and better
search capability than standard PSO [23]. QPSO has been increas-
ingly used in chaotic prediction problems [29,30]; hence, new
algorithms based on standard QPSO have been proposed. The
stochastic coefficient is one of the key factors that influences the
particle movement in classic QPSO; thus, Coelho [31] generated
random numbers by using Gaussian distribution sequences with
zero mean and unit variance for the stochastic coefficient. This
method may allow particles to move away from the current point
and escape from local minima. The mean best position (mbest) is
another key factor; thus, Xi [32] proposed the weighted QPSO
algorithm. This algorithm modifies the calculation method for the
mbest by assigning each particle with a weight coefficient that
linearly decreases with a particle's rank; this method promises
considerable influence on the movement of the particle with high
fitness. To further improve performance, other valuable studies
have been done. Sun [33] incorporated the improved heuristic
strategies into QPSO; and the proposed method does not require
using penalty functions. Moreover, it explores the optimum solu-
tion at a low computational effort. Pan [34] introduced the chaos
theory into QPSO; and the proposed method uses a logistic map to
generate a set of chaotic offsets and produces multiple positions
around every local optimal position of the particle, and thus,
convergence accuracy is better than that in typical QPSO. Sun [35]
proposed modified QPSO, which substitutes the global best posi-
tion (gbest) by a personal best position (pbest) of a randomly
selected particle, thus exhibiting stronger global search capability
than QPSO and PSO. In the present study, an improved algorithm
called opinion leader-based QPSO (OLB-QPSO) is proposed with a
new type of particle. This method modifies the calculation method
for the mbest and uses the composed particles with multiple
structures.

This study investigates (1) how the fuzzy map of data can be
identified based on the correct data partition, (2) how the
explanation of fuzzy rules can be improved to enhance robustness,
and (3) how the local optimal solution can be avoided.

This paper is organized as follows. In Section 2, the construc-
tion of AHRN, including structure and DRSM analyses, is described.
In Section 3, several key factors required to implement AHRN are
discussed in detail. These factors include QPSO, OLB-QPSO, and the
compose particle. In Section 4, three experiments are presented.
Box–Jenkins gas furnace data and the Mackey–Glass chaotic time
series are used to validate prediction capability, whereas
exhausted gas temperature (EGT) samples are employed to
demonstrate the performance of AHRN that uses OLB-QPSO with
composed particles in actual engineering. Finally, the conclusions
are provided in Section 5.

2. Construction of AHRN

The samples used in AHRN are as follows:

P ¼ ½X1X2…XiY� ði¼ 1;2;…;nÞ
Xi ¼ ½xi1xi2…xij�T ði¼ 1;2;…;n; j¼ 1;2;…;mÞ
Y ¼ ½y1y2…yj� ðj¼ 1;2;…;mÞ

8><
>: ; ð1Þ

where n is the dimension of the input vector of a sample, m is the
capacity of the samples, xij is the ith variable in the input vector of
the jth sample, and yj is the output vector of the jth sample.

The output of a sample in AHRN can be obtained by the
weighted sum of different TS fuzzy rules because the TS fuzzy
rules model is suitable to for solving nonlinear prediction pro-
blems. The TS fuzzy rule is represented as follows:

Rt : If x1 is A
t
1 and x2 is A

t
2 and ⋯ and xi is A

t
i

Then yt ¼ at1x1þ⋯þati xiþbt ; ð2Þ

where Rt is the tth fuzzy rule, At
i is the fuzzy set of xi in rule Rt , yt

is the output of Rt , ati is the real coefficient corresponding to xi,
and bt is a compensation value. Therefore, the process of con-
structing rules is a key issue in this study. This issue is related to
the structure of AHRN and the rule selection mechanism.

2.1. Structure of AHRN

AHRN is a network model that consists of a network structure
and DRSM. The network structure shows the topology structure of
the network, whereas DRSM is used to build the fuzzy rules. The
network structure contains many nodes linked in a certain direc-
tion. The typical AHRN structure is shown in Fig. 1.

In this figure, Aki
i is the kith distribution interval of the ith

dimension of the sample; f kii ðxÞ is the membership function on
interval Aki

i ; ω
ki
i is the weight used to adjust the membership

degree calculated by f kii ðxÞ; akii is a real coefficient corresponding to
interval Aki

i , which is similar to that of ani in Formula (2); and B is a
compensation matrix, the elements of which are equivalent to bt

in Formula (2).
Fig. 1 shows an interval in the node, which is used to establish

different fuzzy intervals. Two kinds of intervals are included in
AHRN. The first is real interval (RI), which represents a distribution
interval for a dimension of the current sample. The second is
computing interval (CI), which is generated based on RI and is
used to build the membership degree. The relationship between
RIs and CIs is shown in Fig. 2.

In this figure, (a) is the minimal value of certain dimensions of a
sample, (b) is the maximal value, (c) is the middle value between
(a) and (b), (e) is the middle value between (a) and (c), (f) is the

Fig. 1. Network structure of AHRN.

Fig. 2. Relationship between RIs and CIs.

L. Lin et al. / Neurocomputing 149 (2015) 1003–10131004



middle value between (c) and (b), (a) is also the middle value
between (d) and (e), (b) is also the middle value between (f) and
(g), and the long vertical lines are the interval lines. Therefore, RIs
are (a) and (c) and (c) and (b), whereas CIs are (d) and (e), (e) and
(f) and (f) and (g). That is, an RI is divided into two parts, wherein
each part is used to form a neighbor CI, as shown in Fig. 2.

Any kind of distribution can be approximated by using the
linear weighted sum obtained by the finite number of normal
distributions. Moreover, the diversity of sample distribution
should be considered. Therefore, the sample distribution for a CI
should be obtained by the linear weighted sum based on multiple
normal distributions. In addition, sample distribution in AHRN
should be obtained by the normal distribution of the current CI
and its adjacent CIs. Therefore, the membership function f ki ðxÞ
adopts the normal distribution model, which is represented as
follows:

f ðxÞ ¼ 1
σ
ffiffiffiffiffiffi
2π

p exp
�ðx�μÞ2

2σ2

 !
: ð3Þ

Three normal distributions are typically used to obtain the
membership degree for a CI to reduce computation, as shown as
Formula (4). If a corresponding CI does not exist, then two CIs are
available at least.

Skii ¼ωki�1
i f ki�1

i ðxiÞþωki
i f

ki
i ðxiÞþωkiþ1

i f kiþ1
i ðxiÞ; ð4Þ

where xi is the ith dimension of the sample; Skii is the final
membership degree, called available membership degree (AMD)
on the kith CI; f kii ðxiÞ is the normal distribution model on the kith
CI; ωki

i is the weight on the kith CI.
As shown in Fig. 1, weight ωki

i is used to adjust the influence
degree of adjacent CIs for the membership degree of the current
CI. In the learning process, the number of sample points with
different colors falling into a particular CI is different; thus, the
influence degree of different CIs varies, as shown as Fig. 3.

As shown in Fig. 3, the number of samples for a dimension that
falls into the left CI (interval (a) and (c)) is more than the other two
(intervals (b) and (d) and (c) and (e)). That is, the left CI is more
important than the others in obtaining the membership degree for
the current CI. Therefore, the weight of the left CI is set by
a large value.

The real coefficient akii is used to build a rule. AHRN can select
different real coefficients. By selecting different ki, the rules built
in AHRN may cover the entire rule space, thus improving the
diversity of rules.

Initial AHRN can be constructed according to the maximum
number of RIs. Thus, the maximum number of CIs can be obtained
according to Fig. 2. In the learning process, the actual number of
CIs is updated adaptively by adjusting the center of the CI. The
AHRN structure is equivalent to the adjustment of the distribution
interval for the samples. Thus, in the most situations, k1, k2,…, and
ki in Fig. 1 do not have to be equal to one another because they are
updated adaptively.

To provide enough compensation values, the amount of ele-
ments in B is equal to the maximum RLs in the rule set. Thus, the

compensation value according to the index n should be provided.
For example, the tth rule uses the tth element.

This structure has the following benefits. (1) The range and
number of CIs can be adjusted automatically; thus, the best
suitable distribution can be determined. (2) The distribution
adjustment for all dimensions of the sample results in the optimal
structure. (3) The optimal rule can be set to avoid the disadvantage
of the fixed rule set established by experts.

2.2. DRSM of AHRN

The pattern of the rule used in AHRN is similar to that in the
typical TS fuzzy model. In the typical TS fuzzy model, the rules are
determined by the knowledge of experts or by certain methods for
future samples. However, the model may be unsuitable for all
samples. AHRN can establish the optimal rule set for all samples.

AHRN adopts DRSM to establish the rule set. RL and RS are the
two important parameters that can be obtained by the algorithm
described in Section 3. RL and RS can be used to guide nodes to
build different rules. The optimal RL can prevent redundant or
inadequate rules, whereas the optimal RS can prevent excessive
homogeneity and heterogeneity. After RL and RS are adjusted, the
process of establishing the rule set for a sample is described as
follows:

Step 1: Calculate the AMDs for different CIs of each variable in
the input vector. Organize the AMDs of each variable as the
membership degree ordered vector (MDOV) of each variable.
MDOV is the vector that is composed of membership degrees in
descending order from different CIs of the variable in the input
vector.
Step 2: Select the CIs and the corresponding real coefficients
that are contained in the nodes, the AMD of which is initially
positioned in each MDOV (i.e., the AMD is the maximal one) to
build the first rule.
Step 3: Build the tth (1otoRLþ1) rule based on the previous
rule, which includes two stages. The first stage involves select-
ing the nodes with AMDs that are positioned at tth in each
MDOV. The second stage involves replacing unsuitable nodes
with suitable ones for each dimension according to the RS, as
described in Formula (5):

Am
i 3An

i ¼
Am
i ; ðSmi �Sni Þ=Smi 4RS

An
i ; ðSmi �Sni Þ=Smi rRS

(
; ð5Þ

where 3 is the selection operator; Am
i and An

i are the CIs of the
sample, Smi and Sni are the AMDs on the CIs.

An example is provided to illustrate DRMS clearly. The hypoth-
eses are formulated. (1) The current sample is ½x1j x2j x3j x4j�, with
a dimension of four. (2) Two rules must be built; (3) b1 and b2 are
the compensation values for the two rules. (4) The corresponding
relationships are shown in Table 1, where j is the sample index,
and the other symbol is shown in Fig. 1.

Fig. 3. Sample distribution.

L. Lin et al. / Neurocomputing 149 (2015) 1003–1013 1005



According to Step 2, the first rule can be represented as follows:

R1 : If x1j is A
1
1 and x2j is A

3
2 and x3j is A

3
3 and x4j is A

2
4

Then y1 ¼ a11ω
1
1f

1
1ðx1jÞþa32ω

3
2f

3
2ðx2jÞþa33ω

3
3f

3
3ðx3jÞþa24ω

2
4f

2
4ðx4jÞþb1;

ð6Þ
For the jth sample, when another relationship exists as Formula

(7), then, the second rule is represented as Formula (8), where the
symbol is shown in Formula (5).

ðS11�S21Þ=S11rRS

ðS32�S22Þ=S324RS

ðS33�S13Þ=S33rRS

ðS24�S14Þ=S244RS

8>>>>><
>>>>>:

; ð7Þ

R2 : If x1j is A
2
1 and x2j is A

3
2 and x3j is A

1
3 and x4j is A

2
4

Then y2 ¼ a21ω
2
1f

2
1ðx1jÞþa32ω

3
2f

3
2ðx2jÞþa13ω

1
3f

1
3ðx3jÞþa24ω

2
4f

2
4ðx4jÞþb2;

ð8Þ
Step 3 can be repeated to build additional rules. After the rule

set is established, the output of a sample can be obtained, as
shown in Fig. 4.

In the figure, Rt is the tth rule; yt is an output obtained by Rt; μt
is the weight for yt , which is obtained by Formula (9); and y is the
final output for the sample.

μt ¼∏S; S� Rt ; ð9Þ
where Rt is the tth rule, S is the AMD of the nodes that are building
Rt .

To evaluate the performance of AHRN, least mean square, mean
relative estimation error, and root-mean-square error (RSME) can
be used to construct the fitness function based on Fig. 4.

3. Learning process of AHRN

AHRN provides an approximation model by using several
algorithms for model learning. For example, evolutionary algo-
rithms can be used, but swarm intelligence algorithms may be
better choices. Among swarm intelligence algorithms, the OLB-
QPSO with composed particles is selected for AHRN in this study.
This algorithm is an improved QPSO.

3.1. QPSO algorithm

The basic concept of PSO is that the potential solution for every
optimization problem is represented as a particle flying in the
search space, wherein all particles taken as a swarm are optimized
according to the corresponding fitness value, and each particle
follows the optimal particle in the swarm to search for the best
solution in the search space. The search model uses a velocity
vector that consists of flying direction and distance. However, the
optimal process is implemented by tracking movement. The
velocity (including direction and magnitude) causes the particles
to fly in a finite search space instead of in the entire search space,
and thus, certain PSO algorithms cannot obtain the global optimal
solution. QPSO has been proposed to avoid such problems.

In QPSO, quantum theory is applied in the searching process.
QPSO states that the movement of a particle is affected by bound
states generated from attractive potentials. The particle affected by
a certain bound state can appear in any position in the search
space with a certain probability; thus, the particle that represents
a solution can reach the best position in the feasible search space
instead of diverging to infinity.

Three import positions exist in QPSO: pbest, gbest, and mbest.
pbest represents the best solution obtained by the particle in the
history of movement, and can be regarded as the best individual
knowledge. gbest represents the best solution obtained by all
particles in the history of movement and can be regarded as the
best social knowledge. mbest represents the mean level of all
particles in the current iteration and can be regarded as the
mainstream thought. In the learning process, the best social
knowledge is the optimal solution at the current iteration,
whereas the movement of the particle is affected by both best
individual knowledge and mainstream thought.

Given that xiðtÞ represents the ith dimension of the particle at
time t; pbesti represents the ith dimension of pbest; and mbesti
represents the ith dimension of mbest. The particle moves accord-
ing to the iterative Formula (10):

xiðtþ1Þ ¼ pbestiþβ � mbesti�xi tð Þ
�� ��� ln 1=u

� �
; if kZ0:5

xiðtþ1Þ ¼ pbesti�β � mbesti�xi tð Þ
�� ��� ln 1=u

� �
; if ko0:5

(
;

ð10Þ
where β represents the contraction–expansion coefficient, and u
and k in range [0, 1] are the values generated by the uniform
probability distribution functions. When n represents the capacity
of the swarm, the mbest can be obtained by Formula (11):

mbesti ¼
1
n

∑
n

i ¼ 1
pbestiðtÞ: ð11Þ

3.2. OLB-QPSO

As discussed in the introduction, many improved algorithms
based on QPSO have been introduced. To use the advantage of the
fuzzy rule, valuable studies have been conducted. For example,
Zhai [36] proposed a non-singleton interval type-2 fuzzy logic
system for mixed Gaussian and impulse noise removal, and
quantitatively and visually obtained excellent results because the
system was designed based on QPSO. In the current study, OLB-
QPSO is proposed based on the communication effects study in the
mass communication field. In this field, the opinion leader is the
individual who typically provides information, points of view, and
advices to others, and thus, can influence the decisions of others.
Before information reaches the masses, opinion leaders initially
obtain and interpret information based on their knowledge, and
then allow the information to flow to others. Therefore, the
opinion leader can influence the understanding of others

Table 1
Corresponding relationships.

Sample variable Corresponding MDOV Corresponding CIs

1 x1j ½ω1
1f

1
1ðx1jÞ ω2

1f
2
1ðx1jÞ ω3

1f
3
1ðx1jÞ� A1

1, A
2
1, and A3

1

2 x2j ½ω3
2f

3
2ðx2jÞ ω2

2f
2
2ðx2jÞ ω1

2f
1
2ðx2jÞ� A3

2, A
2
2, and A1

2

3 x3j ½ω3
3f

3
3ðx3jÞ ω1

3f
1
3ðx3jÞ ω2

3f
2
3ðx3jÞ� A3

3, A
1
3, and A2

3

4 x4j ½ω2
4f

2
4ðx4jÞ ω1

4f
1
4ðx4jÞ ω3

4f
3
4ðx4jÞ� A2

4, A
1
4, and A3

4

Fig. 4. Output of a sample.

L. Lin et al. / Neurocomputing 149 (2015) 1003–10131006



regarding the information. In QPSO, the aforementioned phenom-
enon shows that the construction of mainstream thought is
relayed to the particle with the highest fitness compared with
the others. The mbest in OLB-QPSO can be obtained by

mbesti ¼ α � pbestoli ðtÞþð1�αÞ=ðn�1Þ

� ∑
n

c ¼ 1
pbestci ðtÞ�pbestoli ðtÞ

� �
; ð12Þ

where pbestci ðtÞ is the pbest of the cth particle, pbestoli ðtÞ is the
pbest acting as an opinion leader, α is the weight of the opinion
leader, and n is the capacity of the swarm. Experience has shown
that an improved result is obtained when α is set to a value within
the range of [0.3, 0.5].

Supposing that the capacity of the swarm is three, the evolu-
tion of the mbest from Formulas (11) to (12) is shown in Fig. 5.
Therefore, the mbest can approach the suitable pbest.

In summary, the proposed method for generating the mbest is
derived from the weighted QPSO [32], but emphasizes the impor-
tance of the particle with the highest fitness, and is in accordance
with the social communication law on mainstream thought.
Therefore, this method is suitable for generating the mbest.

3.3. Structure of the composed particle

In the classic QPSO model, particle movement is determined by
individual knowledge and mainstream thought. Individual knowledge
is determined by the fitness function and the variable taken by the
particle. The fitness function is determined by the actual problem,
whereas the variable organization in the particle (called the particle
structure) is typically a 1D array, as shown in Fig. 6. Therefore, only one
attractor is used to influence the appearance position of the current
particle. Moreover, the flexibility of motivation is not fully reflected. To
avoid such problems and improve the performance of searching for
the global optimal solution, a composed particle with a multiple
structure is proposed.

In this study, two kinds of parameters are included in AHRN.
The first is used to determine the model structure (i.e., structure
parameters), and the second is used to establish the rule set
(i.e., rule parameters). Both parameters may affect appearance
position. In addition, auxiliary information is needed, such as
fitness value and the structure of the currently obtained model.
Therefore, three subparticles exist in the composed particle, as
shown in Fig. 7. The first is the structure subparticle (SSP), which
considers the structure parameters. The second is the rule sub-
particle (RSP), which considers the rule parameters. The third is
the auxiliary information subparticle (AISP), which considers
auxiliary information. The details of each subparticle in the
learning process are given in the subsequent paragraphs.

SSP and RSP evolve respectively; thus, two attractors exist. The
first attractor, called structure attractor (SA), is generated accord-
ing to all SSPs in the swarm. The second attractor, called the rule
attractor (RA), is generated according to all RSPs in the swarm. SA

is used to optimize the structure of AHRN, whereas RA is used to
optimize the rule set of AHRN. Consequently, the appearance
position of a composed particle is composited influence, as
illustrated is shown in Fig. 8.

As shown in Fig. 8, the composed particle jumps from one
position to another under composited influence. Composited
influence is formed according to the parallelogram law, and the
two edges are SSP and RSP influences. However, updating the
structure in AHRN can impose on the establishment of a rule set.
That is, SSP influence can impose on RSP influence. This compli-
cated relationship can force the composed particle to search for
the gbest with a high possibility, thus increasing the chance of
obtaining the optimal solution. The contents taken by the three
subparticles in the learning process of AHRN are introduced as
follows.

SSP considers the structure parameters, including (1) the
numbers of nodes for each dimension of the sample, wherein all
numbers are used to construct the structure segment; and
(2) every weight of possible nodes, wherein all weights are used
to construct the weight segment. Both segments comprise the
array in SSP, as shown in Fig. 9, where ci is the number of nodes of

pbest

mbest

The bigger black ball represents the pbest with higher fitness

In the middle
Toward the bigger one

Transform direction

Fig. 5. Evolution of the mbest.

The particle

1data 2data 3data idata The particle structure

Data in the particle structure

Fig. 6. Classic particle structure.

AISP

SSP

RSP

The composed particleThe swarm

Fig. 7. The swarm and one of the composed particles.

SSP influence

RSP influence

Composited influence

Fig. 8. Composited influence.

Fig. 9. Array in SSP.

L. Lin et al. / Neurocomputing 149 (2015) 1003–1013 1007



the ith dimension, and ωj
i is the weight of the jth node of the ith

dimension. In the learning process, AHRN selects the front ci
weights of dimension i as the available weights of the ith
dimension, and then uses all available weights of different dimen-
sions to establish the rule set.

RSP considers the rule parameters, including (1) RL and RS,
which are used to construct the instructing segment; (2) every
coefficient of possible nodes, wherein all coefficients are used to
construct the coefficient segment; and (3) compensation values,
which are used to construct the compensation segment. All three
segments comprise the array in RSP, as shown in Fig. 10, where RL
is the number of rules in rule set, RS is the rule similarity used in
DRSM, aji is the coefficient of the jth node of the ith dimension, bn

is the compensation value shown in Fig. 1, and n is typically set to
the maximum RL. In the learning process, the method of selecting
coefficients is the same as that of selecting weights, AHRN selects
front RL compensation values to build the corresponding rules.

AISP considers the current structure of AHRN generated
according to SSP, as well as the fitness value of the current particle.
AISP cannot directly influence movement, but can indirectly
influence it because the composed particle with the highest

fitness, which functions as the opinion leader, has the greatest
influence in OLB-QPSO.

Therefore, the appearance position of the composed particle is
influenced by two inner factors that are generated by SSP and RSP,
and by one outer factor that is generated by the fitness status in the
swarm. The outer factor can improve the composited influence, as
shown in Fig. 8. Experience shows that the particle of this kind can
improve the performance in obtaining the best position because they
can search for the optimal solution in a wide feasible space.

3.4. Description of the entire algorithm

The key description of the implementing algorithm for AHRN is
as follows.

Step 1: All parameters that need confirmation should be
confirmed, such as RI number (RIN), convergence condition
(CC), maximum iterations (MI), particle number (PN), and
coefficient range (CR). All the samples should be normalized
when needed; and the current number of iteration should set
to be 0.
Step 2: All composed particles in the swarm should be
initialized (for each particle, initialize SSP and RSP and then
update AHRN to obtain AISP). All the pbests and the gbest
should be updated.
Step 3: When the fitness of the gbest satisfies the requirement
of the convergence condition, then the optimal solution should
updated to be the gbest and the algorithm stops. Otherwise, the
algorithm continues.Fig. 10. Array in RSP.

Fig. 11. Algorithm flowchart.

L. Lin et al. / Neurocomputing 149 (2015) 1003–10131008



Step 4: The learning process proceeds into iterations, and the
current number of iterations is added with 1. However, when
the maximum number of iterations is reached, the optimal
solution is updated to be the gbest and the algorithm stops.

Step 4.1: The mbest is updated by using Formula (12).
Step 4.2: For each composed particle in the swarm:

Step 4.2.1: Update SSP and RSP by using Formula (10).
Step 4.2.2: Update AHRN when necessary.
Step 4.2.3: Update the rule set according to DRSM when
AHRN is updated.
Step 4.2.4: Obtain the fitness and update AISP.
Step 4.2.5: When the fitness is better than before, update
the pbest to be the current composed particle.
Step 4.2.6: When the fitness is better than that of the
gbest, update gbest to be the current composed particle.
Step 4.2.7: When the fitness of the gbest satisfies the
requirement of CC, update the optimal solution to be the
gbest and the algorithm stops. Otherwise, the algorithm
continues.

As known from the description, the number of function evolu-
tions (NFEs) is equal to the swarm capacity in the initialization
process, whereas NFEs is equal to the swarm capacity multiplied
by the number of iterations in the iteration process. Therefore, in
the entire learning process, the NFEs can be estimated approxi-
mately according to Formula (13):

NFEs¼ S� ð1þ IÞ; ð13Þ
where S is the swarm capacity, and I is the number of iterations.

The algorithm flowchart is shown in Fig. 11 to illustrate the
algorithm in detail.

In each iteration process: The time to update AHRN and
implement fitness function is needed to calculate the fitness of a
particle. In the process of updating AHRN, each dimension of an

sample generates CI nodes, and thus, the time is mainly related to
n� CI � D, where D is the sample dimension and n is the capacity
of the samples. In the process of implementing the fitness
function, RL rules are built, and each dimension is calculated by
RL times, and thus, the time is mainly related to n� RL� D (RL is
typically set to be less than RI to avoid the excessively similar
rules). Therefore, for the swarm, the time is mainly related to
n� S� ðCI � DþRL� DÞ, where S is the swarm capacity.

In the entire learning process: The time for the initialization
and all iterations is needed. During the initialization, all samples
are calculated once, and thus, the time is mainly related to
n� S� ðCI � DþRL� DÞ. However, during all iterations, all sam-
ples are calculated by I times, where I is the numbers of the
iterations, and thus, the time is mainly related to
n� S� ðCI � DþRL� DÞ � I. Consequently, the entire learning
time is mainly related to n� S � ðCI � DþRL� DÞ � ð1þ IÞ,
whereas CI¼ RIþ1 and RLrRI; and thus, the entire learning time
is less than n� S � D� ð2RIþ1Þ � ð1þ IÞ.

Because S, D, and RI is typically far less than n and I, the time
complexity of the algorithm is: when n44 i or i44n,
TðnÞ ¼ OðnÞ; otherwise, TðnÞ ¼ Oðn2Þ. And because the number of
the auxiliary variables is mainly related to the swarm capacity, the
space complexity of the algorithm is SðnÞ ¼OðnÞ.

4. Experiments and analyses

AHRN can be employed to predict a chaotic time series. This
study investigated the prediction capability of AHRN by using
Box–Jenkins gas furnace data and the Mackey–Glass chaotic time
series, and obtained excellent results. To demonstrate the practic-
ability of AHRN in the engineering field, the EGT of a particular
aero engine was used. To simplify experiment manipulation, the
interface of an application programmed for the experiments is

Fig. 12. Application interface.

L. Lin et al. / Neurocomputing 149 (2015) 1003–1013 1009



shown in Fig. 12. All experiments were run by MATLAB R2010b,
and the computer system comprised an Intel Core i3 (2.4 GHz) CPU
with 2 GB RAM and Windows 7 OS.

4.1. Experiment on Box–Jenkins gas furnace data

Box–Jenkins gas furnace data are a classic benchmark in the
chaotic time series field. The data set originally consists of 296
input–output pairs [u(t), y(t)] collected from a furnace with
a sampling time of 9 s. The input u(t) is the gas flow rate into
the furnace, whereas the output y(t) is CO2 concentration in the
outlet gases. The objective is to predict the output y(t) by using the
other variables. Among all data points, u(t), t(t�1), u(t�2), y(t�1),
y(t�2), and y(t�3) were used to construct the input vector; y(t)
was used to construct the output vector; and the input and output
vectors were grouped as one sample. The capacity of the samples
was 290, and the first 70% of the samples were used as training
samples, whereas the remaining 30% were used as testing sam-
ples. Based on several experiments, the effective key parameter
setting was RIN¼5 and PN¼30. The result is shown in Fig. 13. The
average execution time is 1.373 s in each iteration process.

AHRN exhibits a reasonable capability in terms of predicting
Box–Jenkins gas furnace data, and the errors are relatively stable.
The performance can be improved after the algorithm is further
optimized.

4.2. Experiment on the Mackey–Glass chaotic time series

The Mackey–Glass chaotic time series was also employed to
validate the prediction capability of AHRN that uses the OLB-QPSO
with composed particles. The time series was generated by the
following differential delay equation:

xðtþ1Þ ¼ 0:9xðtÞþ 0:2xðt�17Þ
1þx10ðt�17Þ; ð14Þ

Among the points generated, x(t�18), x(t�12), x(t�6), and x(t)
were used to construct the input vector; x(tþ6) was used to
construct the corresponding output vector; and the input and
output vectors were grouped as one sample. The capacity of the
samples was 1000, and the first 500 samples were used as training
samples, whereas the remaining 500 samples were used as testing
samples. Based on several experiments, the effective key para-
meter setting was RIN¼5 and PN¼30. The result is shown in
Fig. 14. The average execution time is 2.653 s in each iteration
process.

The results obtained by applying different algorithms were
compared and shown in Table 2.

The results obtained by using different algorithms were com-
pared and shown in Table 3.

AHRN demonstrate a reasonable capability in predicting the
Mackey–Glass chaotic time series problem. To validate the cap-
ability of robustness in AHRN, the samples should be noised.
Noising of the original samples is shown in Table 4. For example,

Fig. 13. Result for Box–Jenkins gas furnace data experiment.

Fig. 14. Result for the Mackey–Glass experiment.

L. Lin et al. / Neurocomputing 149 (2015) 1003–10131010



data in the original sample is 1.081111, but the corresponding data
with noise is 1.090000.

To guarantee the consistency of the experiment parameter
setting, RIN¼5 and PN¼30. The result is as follows. For the
training samples, RSME was 0.019532 and the average relative
error was 1.7274%. For the testing samples, RSME was 0.019127
and the average relative error was 1.7%. Therefore, reasonable
generalization capability was still reflected although the samples
were noised.

4.3. Experiment on EGT

EGT is an important parameter that characterizes aero engine
health status. This parameter determines the availability of the
engine, and thus, it has considerable practical application value in
accurately predicting aircraft engine exhaust temperature and
processing subsequent design activities. Data in this experiment
were a chaotic time series composed of EGT from a particular aero
engine from the China International Airlines Company. The first 20
original data points are shown in Table 5.

Among the data, x(t�4), x(t�3), x(t�2), and x(t�1) were used
to construct the input vector; x(tþ1) was used to construct the
output vector; and the input and output vectors were grouped as
one sample. The capacity of the samples was 234. The first 192
samples were used as training samples, whereas the remaining 42
samples were used as the testing samples. Based on several
experiments, the effective key parameter setting was RIN¼5 and
PN¼30. The result is shown in Fig. 15. The average execution time
is 0.936 s in each iteration process.

The noise should be removed before training samples in this
experiment. However, the data curve of the result was smoother than
the original, thus indicating that AHRN that uses OLB-QPSO with
composed particles combines the two operations (i.e., removing noise
and training samples), as known in Fig. 15. Therefore, the time to
removing noise was reduced, and the prediction performance was
improved. The results obtained by using different algorithms are
shown in Table 6.

Table 2
Results from different algorithms.

Algorithm MSE Average relative errors

Proposed by Kang et al. [37] 0.161 –

Proposed by Kukolj and Levi [37] 0.129 –

Proposed by Pomares et al. [37] 0.363 –

DE/QDE [37] 0.112 -
The present study 0.111 0.09428%

Note: “�” indicates that relevant studies did not provide the corresponding
information.

Table 3
Results from different algorithms.

Algorithm Training samples Testing samples

RSME Average relative
errors

RSME Average relative
errors

Choi et al. [38] 0.000430 – 0.000410 –

Maguire et al.
[39]

0.014000 – 0.009000 –

Duan et al. [40] 0.024000 – 0.025300 –

The present
study

0.019138 1.6984% 0.020895 1.9141%

Note: “�” indicates that relevant studies did not provide the corresponding
information.

Table 4
Data with noise.

Original
data

Noised
data

Original
data

Noised
data

Original
data

Noised
data

1.081111 1.090000 0.752387 0.760000 0.869055 0.857000
0.982946 0.975000 0.520449 0.530000 0.376558 0.362000
1.001452 1.010000 0.628194 0.622000 1.224462 1.210000
0.762473 0.757000 0.522397 0.512000 0.856656 0.847000

Table 5
First 20 original data points.

Time (s) EGT (1C) Time (s) EGT (1C) Time (s) EGT (1C) Time (s) EGT (1C)

t(1) 533 t(6) 563 t(11) 548 t(16) 526
t(2) 538 t(7) 525 t(12) 556 t(17) 541
t(3) 538 t(8) 528 t(13) 521 t(18) 526
t(4) 536 t(9) 582 t(14) 543 t(19) 523
t(5) 537 t(10) 545 t(15) 546 t(20) 526

Fig. 15. Result for EGT experiment.

Table 6
Results from different algorithms.

Algorithm RSME of testing
data

Average relative error of testing
data (%)

Shisheng et al. [41] - 1.820
The present study 14.8089 2.070
Standard BP neural

network
20.2072 2.879

Note: “�” indicates that relevant studies did not provide the corresponding
information.

L. Lin et al. / Neurocomputing 149 (2015) 1003–1013 1011



After comparing with other algorithms, AHRN that uses OLB-
QPSO with composed particles was found to exhibit certain
advantages over other algorithms with regard to predicting EGT
of a particular aero engine from the China International Airlines
Company.

5. Conclusion

AHRN has been introduced in this study. The structure of AHRN
can be updated adaptively according to actual samples, with DRSM
providing the most suitable rule set to obtain the optimal solution.
Several algorithms can be applied to implement the learning
process of AHRN; however, OLB-QPSO with composed particles
is selected in this research. This algorithm obtains the mbest based
on the opinion leader, and the structure of the composed particle
is composed of SSP, RSP, and AISP. The influencing factors for the
movement of the composed particle include the composited
influence generated by SSP and RSP, as well as the fitness status
(which occurs in AISP) in the swarm. The experiments have shown
that AHRN that uses OLB-QPSO with composed particles exhibits
powerful generalization capability and good performance in chao-
tic time series prediction, as well as high practical application
value when used with the aid of computers.

Acknowledgments

The authors are grateful to the anonymous reviewers for their
very helpful comments and constructive suggestions with regard
to this paper. This paper is supported by National Natural Science
Foundation of China (Grant no. 51075083), the major project of
National Defense Foundation of China, and also by the advance
research project of General Armament Department.

References

[1] F. Gao, G. Xiao, J.-j. Chen, Product interface reengineering using fuzzy
clustering, Comput.-Aided Des. 40 (2008) 439–446.

[2] S.F. Qin, I.N. Jordanov, D.K. Wright, Freehand drawing system using a fuzzy
logic concept, Comput.-Aided Des. 31 (1999) 359–360.

[3] S.F. Qin, D.K. Wright, I.N. Jordanov, From on-line sketching to 2D and 3D
geometry: a system based on fuzzy knowledge, Comput.-Aided Des. 32 (2000)
851–866.

[4] C.C.L. Wang, T.K.K. Chang, M.M.F. Yuen, From laser-scanned data to feature
human model: a system based on fuzzy logic concept, Comput.-Aided Des. 35
(2003) 241–253.

[5] T. TAKAGI, M. SUGENO, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst. Man Cybern. 15 (1985) 116–132.

[6] L.X. Wang, Adaptive Fuzzy Systems and Control: Design Stability Analysis,
Prentice Hall Professional Technical Reference, 1994.

[7] J.J. Buckley, Sugeno type controllers are universal controllers, Fuzzy Sets Syst.
53 (1993) 299–303.

[8] P.P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data streams,
IEEE Trans. Fuzzy Syst. 16 (2008) 1462–1475.

[9] Y. Gao, M.J. Er, NARMAX time series model prediction: feedforward and
recurrent fuzzy neural network approaches, Fuzzy Sets Syst. 150 (2005)
331–350.

[10] L. Wang, R. Langari, Complex systems modeling via fuzzy logic, IEEE Trans.
Syst. Man Cybern. Part B Cybern. 26 (1996) 100–106.

[11] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy
logic controller, Int. J. Man Mach. Stud. 7 (1975) 1–15.

[12] M.F. Azeem, M. Hanmandlu, N. Ahmad, Structure identification of generalized
adaptive neuro-fuzzy inference systems, IEEE Trans. Fuzzy Syst. 11 (2003)
666–681.

[13] N. Wang, Y. Yang, A fuzzy modeling method via enhanced objective cluster
analysis for designing TSK model, Expert Syst. Appl. 36 (2009) 12375–12382.

[14] J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE
Trans. Syst. Man Cybern. 23 (1993) 665–685.

[15] A. Bastian, Identifying fuzzy models utilizing genetic programming, Fuzzy Sets
Syst. 113 (2000) 333–350.

[16] B. Zhu, C.-Z. He, P. Liatsis, X.-Y. Li, A GMDH-based fuzzy modeling approach for
constructing TS model, Fuzzy Sets Syst. 189 (2012) 19–29.

[17] R. Ji, Y. Yang, W. Zhang, Incremental smooth support vector regression for
Takagi–Sugeno fuzzy modeling, Neurocomputing (2013).

[18] A. Kalhor, B.N. Araabi, C. Lucas, A new systematic design for habitually linear
evolving TS fuzzy model, Expert Syst. Appl. 39 (2012) 1725–1736.

[19] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence,
U Michigan Press, 1975.

[20] M. Dorigo, G. Di Caro, T. Stützle, Ant Algorithms, Future Generation Computer
Systems, 16, 2000, v-vii.

[21] J. Kennedy, R.C. Eberhart, Y. Shi, Chapter seven—the particle swarm, in:
J. Kennedy, R.C. Eberhart, Y. Shi (Eds.), Swarm Intelligence, Morgan Kaufmann,
San Francisco, 2001, pp. 287–325.

[22] R.C. Eberhart, Y. Shi, Chapter four—evolutionary computation implementa-
tions, in: R.C. Eberhart, Y. Shi (Eds.), Computational Intelligence, Morgan
Kaufmann, Burlington, 2007, pp. 95–143.

[23] A. Khare, S. Rangnekar, A review of particle swarm optimization and its
applications in Solar Photovoltaic system, Appl. Soft Comput. 13 (2013)
2997–3006.

[24] J. Wei, L. Guangbin, L. Dong, Elite particle swarm optimizaion with mutation,
system simulation and scientific computing, 2008. ICSC 2008, in: Seventh
International Conference on Asia Simulation Conference; 2008, pp. 800–803.

[25] L. Wang, Z. Cui, J. Zeng, Hybrid intelligent systems, 2009, in: Ninth Interna-
tional Conference on HIS’09. 1(2009), pp. 388–393.

[26] J.-H. Seo, C.-H. Im, C.-G. Heo, J.-K. Kim, H.-K. Jung, C.-G. Lee, Multimodal
function optimization based on particle swarm optimization, IEEE Trans.
Magn. 42 (2006) 1095–1098.

[27] W. Jianfang, L. Weihua, Optimization algorithm based on T–S fuzzy model of
self-adaptive disturbed particle swarm optimization and neural network, in:
2009 Ninth International Conference on Hybrid Intelligent Systems, 2009,
pp. 457–461.

[28] H. Liu, S. Xu, X. Liang, A modified quantum behaved particle swarm
optimization for constrained optimization, in: International Symposium on
Intelligent Information Technology Application Workshops, 2008. IITAW’08.
2008, pp. 531–534.

[29] V.C. Mariani, A.R.K. Duck, F.A. Guerra, L.d.S. Coelho, R.V. Rao, A chaotic
quantum-behaved particle swarm approach applied to optimization of heat
exchangers, Appl. Therm. Eng. 42 (2012) 119–128.

[30] F. Liu, H. Duan, Y. Deng, A chaotic quantum-behaved particle swarm optimiza-
tion based on lateral inhibition for image matching (International Journal for
Light and Electron Optics), Optik 123 (2012) 1955–1960.

[31] L.d.S. Coelho, Gaussian quantum-behaved particle swarm optimization
approaches for constrained engineering design problems, Expert Syst. Appl.
37 (2010) 1676–1683.

[32] M. Xi, J. Sun, W. Xu, An improved quantum-behaved particle swarm optimiza-
tion algorithm with weighted mean best position, Appl. Math. Comput. 205
(2008) 751–759.

[33] C. Sun, S. Lu, Short-term combined economic emission hydrothermal schedul-
ing using improved quantum-behaved particle swarm optimization, Expert
Syst. Appl. 37 (2010) 4232–4241.

[34] D. Pan, J. Li, An Improved quantum-behaved particle swarm optimization
algorithm based on chaos theory exerting to local optimal position, Inf.
Comput. Sci. 10 (2013) 1819–1828.

[35] J. Sun, C.H. Lai, W. Xu, Z. Chai, A Novel and More Efficient Search Strategy of
Quantum-behaved Particle Swarm Optimization, Adaptive and Natural Com-
puting Algorithms, Springer (2007) 394–403.

[36] D. Zhai, M. Hao, J.M. Mendel, A non-singleton interval type-2 fuzzy logic
system for universal image noise removal using quantum-behaved particle
swarm optimization, in: Fuzzy Systems (FUZZ), 2011 IEEE International
Conference on, (IEEE2011), pp. 957–964.

[37] H. Su, Y. Yang, Differential evolution and quantum-inquired differential
evolution for evolving Takagi–Sugeno fuzzy models, Expert Syst. Appl. 38
(2011) 6447–6451.

[38] J.-N. Choi, S.-K. Oh, W. Pedrycz, Identification of fuzzy models using
a successive tuning method with a variant identification ratio, Fuzzy Sets
Syst. 159 (2008) 2873–2889.

[39] L.P. Maguire, B. Roche, T.M. McGinnity, L.J. McDaid, Predicting a chaotic time
series using a fuzzy neural network, Inf. Sci. 112 (1998) 125–136.

[40] J.-C. Duan, F.-L. Chung, Multilevel fuzzy relational systems: structure and
identification, Soft Comput. 6 (2002) 71–86.

[41] Z. Shisheng, L. Da, D. Gang, Convolution sum discrete process neural network
and its application in aeroengine exhausted gas temperature prediction, Acta
Aeronaut. Astronaut. Sin. 32 (2012) 438–455.

Lin Lin received the Ph.D degree in Mechanical Design
from Harbin Institute of Technology, Harbin, China, in
2003. She is currently a professor in the School of
Mechatronics Engineering in Harbin Institute of Tech-
nology. Her research interests include time series pre-
diction, neural networks, fuzzy modeling, and
mechanical product sheme intelligent design.

L. Lin et al. / Neurocomputing 149 (2015) 1003–10131012

http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref1
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref1
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref2
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref2
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref3
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref3
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref3
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref4
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref4
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref4
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref5
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref5
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref6
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref6
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref7
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref7
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref8
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref8
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref9
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref9
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref9
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref10
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref10
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref11
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref11
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref13
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref13
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref14
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref14
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref15
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref15
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref16
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref16
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref17
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref17
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref23
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref23
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref23
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref24
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref24
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref24
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref25
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref25
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref25
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref26
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref26
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref26
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref28
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref28
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref28
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref30
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref30
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref30
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref32
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref32
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref32
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref33
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref33
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref34
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref34
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref35
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref35
http://refhub.elsevier.com/S0925-2312(14)00970-9/sbref35


Feng Guo received the B.A. and M.A degrees from the
Newmedia technology and Art Department in Harbin
Institute of Technology, Harbin, China, in the year 2006
and 2008 respectively. He is currently working towards
the Ph.D. degree in School of Mechatronics Engineering
in Harbin Institute of Technology. His research interests
include fuzzy modeling and control, particle swarm
optimization, and mechanical product sheme intelli-
gent design.

Xiaolong Xie received the M.E. degrees in Mechanical
Design & Theory from Harbin Institute of Technology,
Harbin, China, in 2011. He is currently working towards
the Ph.D. degree in School of Mechatronics Engineering
in Harbin Institute of Technology. His research interests
include computer-aided design, and knowledge-based
engineering.

Bin Luo received the B.A degrees from the School of
Mechatronics Engineering in Harbin Engineering Uni-
versity. He is currently working towards the M.A degree
in School of Mechatronics Engineering in Harbin Insti-
tute of Technology. His research interests include
Multi-objective optimization and intelligent design.

L. Lin et al. / Neurocomputing 149 (2015) 1003–1013 1013


	Novel adaptive hybrid rule network based on TS fuzzy rules using an improved quantum-behaved particle swarm optimization
	Introduction
	Construction of AHRN
	Structure of AHRN
	DRSM of AHRN

	Learning process of AHRN
	QPSO algorithm
	OLB-QPSO
	Structure of the composed particle
	Description of the entire algorithm

	Experiments and analyses
	Experiment on Box–Jenkins gas furnace data
	Experiment on the Mackey–Glass chaotic time series
	Experiment on EGT

	Conclusion
	Acknowledgments
	References




