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Deregulation and restructuring in power systems, the ever-increasing demand for electricity, and concerns
about the environment are the major driving forces for using Renewable Energy Sources (RES). Recently,
Wind Farms (WFs) and Fuel Cell Power Plants (FCPPs) have gained great interest byDistribution Companies
(DisCos) as the most common RES. In fact, the connection of enormous RES to existing distribution
networks has changed the operation of distribution systems. It also affects the Volt/Var control problem,
which is one of the most important schemes in distribution networks. Due to the intermittent charac-
teristics of WFs, distribution systems should be analyzed using probabilistic approaches rather than
deterministic ones. Therefore, this paper presents a new algorithm for the multi-objective probabilistic
Volt/Var control problem in distribution systems including RES. In this regard, a probabilistic load flow
based on Point Estimate Method (PEM) is used to consider the effect of uncertainty in electrical power
production of WFs as well as load demands. The objective functions, which are investigated here, are the
total cost of power generated by WFs, FCPPs and the grid; the total electrical energy losses and the total
emission produced byWFs, FCPPs and DisCos. Moreover, a newoptimization algorithm based on Improved
Shuffled Frog Leaping Algorithm (ISFLA) is proposed to determine the best operating point for the active
and reactive power generated byWFs and FCPPs, reactive power values of capacitors, and transformers’ tap
positions for the next day. Using the fuzzy optimization method and max-min operator, DisCos can find
solutions for different objective functions, which are optimal from economical, operational and environ-
mental perspectives. Finally, a practical 85-bus distribution test system is used to investigate the feasibility
and effectiveness of the proposed method.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Uneconomic network expansion to supply remote loads, areas
with appropriate capabilities of wind speed and solar radiation [1],
environmental concerns about harmful effects of CO2 emissions, and
deregulation and privatization problems are some of the major
incentives for the use of clean and sustainable energy resources [2].
Currently, DisCos utilizeWFs and FCPPs to generate electric power in
awide rangeof applications. In fact, in thenear future,WFs and FCPPs
will be considered as significant sources to generate electric power
because of their environmental, social, and economic benefits [1,3].
: þ98 711 7353502.
(A.R. Malekpour), niknam@

All rights reserved.
Challenging issues in distribution systems have emerged due to
the wide integration of environmentally friendly energy resources.
Moreover, distribution systems usually have radial structures,
which include distribution lines with low X/R ratio. Therefore,
choosing proper strategies for controlling Volt/Var ratio is of critical
importance for DisCos [4]. In this regard, many studies have
investigated the daily Volt/Var control problemwhile the effects of
Distributed Generators (DG) are considered in the evaluations
[5e14]. In [5e8], the authors have used genetic algorithm and Ant
Colony Optimization (ACO) algorithm for optimizing the total active
power losses in the Volt/Var control problem. In [9], Niknam has
proposed a fuzzy cost-based compensation methodology to solve
the daily Volt/Var control problem in distribution networks
including DGs. In [10] the problem of voltage rise mitigation in
distribution networks considering DGs was studied thoroughly. In
[11], minimization of active power losses and micro-generation
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Nomenclature

List of symbols
X state variables vector
NDisCo number of DisCos
NWF number of WFs
NFCCP number of FCPPs
Nt number of transformers
Nc number of capacitors
T number of load variation steps
t index which represents time steps of load level
ht time interval
PricetDisCo;i cost of power supplied by the ith DisCo at the tth

hour
PricetWF;j cost of power generated by the jth WF at the tth hour
PricetFCPP;k cost of power generated by the kth FCPP at the tth

hour
~P
t
DisCo;i expected value of power supplied by the ith DisCo at

the tth hour
~P
t
WF;j expected value of power generated by the jthWF at the

tth hour
~P
t
FCPP;k expected value of power generated by the kth FCPP at

the tth hour
Tap tap vector representing tap position of all transformers

in the next day
Tapi tap vector including tap position of the ith transformer

in the next day
Tapt

i tap position of the ith transformer for the tth load level
step

PWF WFs active power vector including active power of all
WFs in the next day

PWFi WFs active power vector including expected value of
active power of the ith WF in the next day

~P
t
WFi expected value of active power generated by the ith

WF at the tth hour
PFCPP FCPPs active power vector including active power of all

FCPPs in the next day
PFCPPi FCPPs active power vector including expected value of

active power of the ith FCPP in the next day
~P
t
FCPPi expected value of active power generated by the ith

FCPP at the tth hour
QC capacitors reactive power state vector including

reactive power of all capacitors in the next day
Qci capacitors reactive power vector including reactive

power of ith capacitor in the next day
Qt
ci reactive power of the ith capacitor at the tth hour

Nbr number of branches
Ri resistance value of the ith branch.
~I
t
i expected value of the current for the ith branch at the

tth hour
~E
t

total expected value of emission produced by DisCos,
WFs and FCPPs at the tth hour

~E
t
FC expected value of emission produced by FCPPs at the

tth hour
~E
t
WF expected value of emission produced byWFs at the tth

hour
~E
t
DisCo expected value of emission produced by DisCos at the

tth hour
NOxtFCPP nitrogen oxide pollutants of FCPP at the tth hour

SO2tFCPP sulfur oxide pollutants of FCPP at the tth hour
CO2tFCPP carbon dioxide pollutants of FCPP at the tth hour
NOxtDisCo nitrogen oxide pollutants of DisCo at the tth hour

SO2tDisCo sulfur oxide pollutants of DisCo at the tth hour
CO2tDisCo carbon dioxide pollutants of DisCo at the tth hour
Pi net injected active power components at the ith bus
Qi net injected reactive power components at the ith bus
Vi amplitude of the voltage at the ith bus
di angle of the voltage at the ith bus
Yij amplitude of the branch admittance between the ith

and jth buses
qij angle of the branch admittance between the ith and jth

buses
Pmin;FCPPi minimum active power of the ith FCPP
Qmin;FCPPi minimum reactive power of the ith FCPP
Pmax;FCPPi maximum active power of the ith FCPP
Qmax;FCPPi maximum reactive power of the ith FCPP
Pmin;WFi minimum active power of the ith WF
Qmin;WFi minimum reactive power of the ith WF
Pmax;WFi maximum active power of the ith WF
Qmax;WFi maximum reactive power of the ith WF
PLineij;max maximum active power line flow between the nodes

i and j
j~PLineij jt expected value of active power line flow between the

nodes i and j at the tth hour
Tapmin

i minimum tap positions of the ith transformer
Tapmax

i maximum tap positions of the ith transformer
Tapti current tap positions of the ith transformer at the tth

hour
Qcmin

i minimum reactive power of the ith capacitor
Qcmax

i maximum reactive power of the ith capacitor
Qcti current reactive power of the ith capacitor at the tth hour
Pfmin minimum power factor of DisCo
Pfmax maximum power factor of DisCo
Pf t current power factor of DisCo at the tth hour
~V
t
i expected value of voltage magnitude of the ith bus at

the tth hour
Vmax maximum value of voltage magnitude
Vmin minimum value of voltage magnitude
S probabilistic solution set of output variables
Si ith probabilistic output variable
F set of deterministic power flow equations
z input set of uncertain variables
zl uncertain input random variable
fzl probability density function
mZi mean value of the input random variable zi
Zl;1; Zl;2 estimated locations of input random variable zl
ul;1;ul;2 weighting factors for estimated locations of input

random variable zl
m total number of random input variables
EðSki Þ kth moment of ith output random variable
szl standard deviation of zl
ll;3 skewness coefficient of zl
xl;k kth standard location of zl
mSi mean of ith solution random variable
sSi standard deviation of ith solution random variable
fmin
i lower limit of ith objective function.
fmax
i upper limit of ith objective function
fiðXÞ ith objective function
mfi ðXÞ ith membership function
ObjectðXÞ fuzzy solution multiple objectives
Vi magnitude of voltage at ith bus
di angle of voltage at ith bus
Pg active power of FCPP or WF
Qg reactive power of FCPP or WF
PLoad active power for load
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QLoad reactive power for load
Rþ jX line impedance
rand() random number between 0 and 1
Dmin minimum permitted variation in frog’s position
Dmax maximum permitted variation in frog’s position
Di variation in frog’s position
Xbest frog with the best fitness
Xworst frog with the worst fitness
Xglobal global best frog
Xchange changing frog position vector
randpermð:Þ randomly chosen index from 1,2,.,n
PWT vector of the active power outputs of all wind turbines

in all time intervals

PtWT active power output of the wind turbine in the tth time
interval

w1;2;3;max WT cut-in, rated, cut-off and maximum wind speed,
respectively

j a function that converts wind speed to WT power
output

VðIÞFCPP output voltage (current) of Fuel-Cell
KP proportional coefficient
E0 potential of fuel-cell in thermodynamic equilibrium
wt wind speed during hour t
Ptotal FCPP total power output of fuel-cell
PFCPP power output of fuel cell
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shedding has been proposed as a methodology to coordinate
voltage support in distribution networks with large integration of
DGs in micro-grids. The impact of DGs on the existing voltage and
reactive power control equipments have been studied in [12]. In
[13], Su proposed several voltage control strategies to incorporate
existing voltage control devices and reactive power compensators.
Senjyu et al. proposed an optimal voltage control scheme consid-
ering coordination of DGs, the load ratio control transformers, step
voltage regulators, shunt capacitors, shunt reactors, and static Var
compensators [14].

According to the recent advances in the wind turbine tech-
nology, the utilization of WFs is going to be more popular than
before. The stochastic nature of the wind may cause the injection of
fluctuated electrical power into the distribution systems [15].
Therefore, extensive study in the field of WF analysis is necessary.
Daily load demand is also stochastic due to the heterogeneity of
consumers. Hence, Volt/Var control is a complex problem that
cannot be solved by deterministic approaches. Deterministic load
flow cannot fulfill all the requirements for analyzing a power
systemwith high penetration level of renewable sources of energy.
Thus, probabilistic analysis of distribution systems is necessary to
cope with all Volt/Var control limitations, which may happen [16].
The Point Estimate Method (PEM) is a reliable and proficient
method for modeling uncertainty in the power systems [17].
Consequently, in this paper, PEM has been applied to model the
load/generation uncertainty in the Volt/Var control problem.

In some studies, probabilistic load flow is used to consider the
effect of wind power plant integration on the voltage control of
distribution systems. In [18], the adjustment of voltage regulators
and switched capacitors as reactive power control devices in distri-
bution networks was studied based on the probabilistic load flow
analysis. The objective functions were the total power losses and the
voltage fluctuations. In addition, multi-parameter control strategies
were employed to alleviate the violation of constraints. In [19],
Hatziargyriou applied a constrained probabilistic load flow to the tap
settings aswell as the reactive compensationdevices simultaneously.
In this work, various rates of wind power penetration were consid-
ered to show the effectiveness of the methodology.

In [20], a probabilistic load flow was utilized to investigate the
voltage fluctuations in the high wind power penetrated systems.
Uncertainties caused by the wind speed variations, load fluctua-
tions, generator outages, and branch outages were taken into
account. Hong and Luo [21] presented a method based on genetic
algorithm using wind generator voltages, static compensators, and
transformer taps as controllers to regulate the voltage profile for
probabilistic operation planning in the distribution systems. In [22],
a new method was proposed to consider the impact of the
stochastic behavior of the loads and DG power productions as well
as the operation of voltage control devices and random network
configuration on the voltage profile in the network.
In all previous studies, the daily Volt/Var control has been
modeled as a single-objective optimization problem. Recently,
environmental concerns about global warming and greenhouse
gases have led to extensive use of emission-free plants such as WFs
and FCPPs, which can greatly reduce nitrogen and sulfur oxides
emissions. Hence, in this paper, RES are considered in order to
reduce the amount of total emission as one of the main objective
functions. The total power loss due to the small X/R ratio of
distribution lines is considered as another important objective
function and its effect on Volt/Var control problem is investigated.
Also, the total cost of power generation by WFs, FCPPs, and the
distribution companies is taken into account to achieve an
economic plan for the Volt/Var control problem.

The main purpose of this article is to develop a multi-objective
probabilistic daily Volt/Var control strategy for distribution
networks regarding the probabilistic characteristics of wind farms
and daily load, operation of voltage control devices, and the
deterministic nature of FCPPs. The control variables are the active
and reactive power production of WFs and FCPPs, reactive power of
capacitors and transformers’ tap in the next day. Initially, the
objective functions are modeled with fuzzy sets to consider their
imprecise nature. Later, the transformers’ tap, reactive power of
capacitors, bus voltages magnitude as well as the stochastic active
and reactive power of WFs and FCPPs are obtained using the
maxemin operator and probabilistic power flow.

The control devices such as capacitors, DGs, and load tap
changers convert the optimal daily Volt/Var control strategy to
a mixed integer nonlinear problem. Among different methods to
solve these types of problems, the conventional and classical
methods may end up in a local minimum rather than a global one
and some of them cannot handle the integer problems [5e9].
Consequently, evolutionary algorithms because of their indepen-
dency from the type of objective functions and constraints, have
beenusedbymany researchers in recent years [7e9]. Oneof thenew
evolutionary algorithms with a great potential for optimization
applications is the Shuffled Frog Leaping Algorithm (SFLA). In fact,
this algorithm can solve complex optimization problems, which are
nonlinear, non-differentiable and multi-modal but it may trap in
local optima. To overcome this problem, in this paper a new SFLA
algorithm is proposed to improve the local exploration of the algo-
rithm in the entire search space. The main idea behind the new frog
leaping rule is to extend the direction and the length of each frog’s
jump by emulating the frog’s perceptions. Themodification expands
the local search space and improves the performance of the SFLA.

2. Problem formulation

As mentioned before, power systems are inherently stochastic
due to uncertainties in both intermittent energy sources and load
demands. Consequently, the bus voltages, the active and reactive
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power flows and power losses, the emission generated by DisCos,
WFs and FCPPs, and the total cost should be calculated in a proba-
bilistic environment.

It should be noted that superscript w indicates the expectation
of random variables.

2.1. Decision variables

X ¼ �
Tap; PWF;QWF; PFCPP;QFCPP;QC

�
1�n

Tap ¼ �
Tap1;Tap2;.; TapNt

�
1�ðT�NtÞ

Tapi ¼
h
Tap1i ;Tap

2
i ;.; TapTi

i
1�T

i ¼ 1;2;3;.;Nt

PWF ¼ �
PWF1; PWF2;.; PWF NWF

�
1�ðT�NWFÞ

PWFi ¼
�
~P
1
WFi;

~P
1
WFi;.; ~P

T
WFi

�
1�T

i ¼ 1;2;3;.;NWF

QWF ¼ �
QWF1;QWF2;.;QWF NWF

�
1�ðT�NWFÞ

QWFi ¼
�
~Q
1
WFi;

~Q
2
WFi;.; ~Q

T
WFi

�
1�T

i ¼ 1;2;3;.;NWF

PFCPP ¼ �
PFCPP1; PFCPP2;.; PFCPP NFCPPi

�
1�ðT�NFCPPÞ

PFCPPi ¼
�
~P
1
FCPPi;

~P
2
FCPPi;.; ~P

T
FCPPi

�
1�T

i ¼ 1;2;3;.;NFCPP

QFCPP ¼ �
QFCPP1;QFCPP2;.;QFCPP NFCPPi

�
1�ðT�NFCPPÞ

QFCPPi ¼
�
~Q
1
FCPPi;

~Q
2
FCPPi;.; ~Q

T
FCPPi

�
1�T

i ¼ 1;2;3;.;NFCPP

QC ¼ �
Qc1;Qc2;.;QcNc

�
1�ðT�NcÞ

Qci ¼
h
Q1
ci;Q

2
ci;.;QT

ci

i
1�T

i ¼ 1;2;3;.;Nc

n ¼ T � ðNt þ NWF þ NFCPP þ NcÞ

2.2. Objective functions

The objective functions are defined as follows:

2.2.1. Total electrical energy costs generated by FCPPs, WFs and DisCos
One of the main objective functions in the deregulated power

market is the total electrical energy cost.

~f 1ðXÞ ¼ PT
t¼1

Ct

Ct ¼ PNDisCo

i¼1
PricetDisCo;i$~P

t
DisCo;i$h

t þ PNWF

j¼1
PricetWF;j$

~P
t
WF;j$h

t

þ
XNFCCP

k¼1

PricetFCPP;k$~P
t
FCPP;k$h

t (1)
Here, it is assumed that the tap position of transformers can
change stepwise.

2.2.2. Total electrical energy losses
The total electrical energy for the next day ahead can be defined

as follows:

~f 2ðXÞ ¼
XT
t¼1

XNbr

i¼1

�
Ri$j~I

t
i j
2
$ht

�
(2)

2.2.3. Emission generated by DisCo, WFs, and FCPPs
Emission produced by DisCos, WFs, and FCPP as the third

objective function is calculated as follows:

min ~f 3ðXÞ ¼ PT
t¼1

~E
t ¼ PT

t¼1

�
~E
t
FC þ ~E

t
WF þ ~E

t
DisCo

�

~E
t
FCPP ¼ COt

2FCPP
þNOxtFCPP þ SOt

2FCPP

¼ ð1078þ 0:03þ 0:006Þlb=MWh$
PNFCPP

j¼1

~P
t
FCPPj

~E
t
DisCo ¼ COt

2DisCo
þ NOxtDisCo þ SOt

2DisCo

¼ ð2031þ 5:06þ 7:9Þlb=MWh$~P
t
DisCo

~E
t
WF ¼ 0

(3)

where~P
t
DisCo is the expected active power infeed to the distribution

system at hour t.

2.3. Constraints

In order to have an optimal plan while maintaining the security
and operational conditions, the following constraints should be
met:

2.3.1. Distribution power flow equations

Pi ¼
PNbus

i¼1
ViVjYijcos

�
qij � di þ dj

	

Qi ¼
PNbus

i¼1
ViVjYijsin

�
qij � di þ dj

	 (4)

2.3.2. Hourly limits on WFs and FCPPs’s active power

Pmin;FCPPi � ~P
t
FCPPi � Pmax;FCPPi

Pmin;WFi � ~P
t
WFi � Pmax;WFi

(5)

2.3.3. Hourly limits on WFs and FCPPs’s reactive power

Qmin;FCPPi � ~Q
t
FCPPi � Qmax;FCPPi

Qmin;WFi � ~Q
t
WFi � Qmax;WFi

(6)

2.3.4. Line flow limits




~PLineij




t < PLineij;max (7)



A.R. Malekpour et al. / Renewable Energy 39 (2012) 228e240232
2.3.5. Limits on the transformers’ tap

Tapmin
i < Tapti < Tapmax

i (8)

2.3.6. Hourly limits on capacitors reactive power

Qcmin
i < Qcti < Qcmax

i (9)

2.3.7. Hourly limits on DisCo power factor

Pfmin � Pf t � Pfmax (10)

2.3.8. Hourly limits on bus voltage magnitude

Vmin � ~V
t
i � Vmax (11)
3. Modeling RES in distribution systems

Different models of RES according to their operation technology
and connection to the grid are as follows:
3.1. Wind farms (WFs)

WFs are categorized into two different types of fixed and vari-
able speed units. The first type uses a squirrel cage induction
generator and is directly connected to the network through a gear
box. The second type uses a synchronous or double-fed induction
generator and is connected to the utility grid through power elec-
tronic devices. The output power varies with respect to the wind
speed. The wind turbine active power is mathematically described
by [25]:

PtWT ¼

8><
>:

0 wt � w1 or wt � w3

j
�
wt

	
w1 � wt � w2

PWT w2 � wt � w3

t ¼ 1;2;.; T (12)
3.2. Fuel cell power plants (FCPPs)

FCPPs are electrochemical plants, which have low emissions
with a wide range of applications. Unlike the traditional power
generators, they have no rotating part and can convert the chemical
energy directly to the electrical power. In fact, power electronics
interfaces are employed to connect FCPPs to the utility grid. The
FCPP output power can be calculated as follows [26]:

PFCPP ¼ VFCPP$IFCPP (13)

If the inner resistance of the FCPP is R, the total electrical power,
which is converted by this unit is evaluated as follows:

Ptotal FCPP ¼ PFCPP þ R$I2FCPP (14)

Here, the regulation of electric power generation of a fuel-cell is
defined as:

Ptotal FCPP ¼ Kp$ðE0 � VFCPPÞ2 (15)
4. The effect of WFs and FCPPs on voltage profile of
distribution networks

Investment tax credit and imposition of carbon tax have
attracted DisCos’ attention to sustainable plants and RES more than
before. However, DisCos will face new technical and operational
challenges with the proliferation of RES. With installation of WFs
and FCPPs in the distribution networks, any change in the power
flow may change the voltage profile. Since the X/R ratio of the
distribution lines is small, the WF or FCPP has much impact on the
voltage profile. To show this influence, consider the 2-bus test
system of Fig. 2. The voltage drop along the line from bus 1 to bus 2
is calculated as follows:

DV ¼ V1:d1 � V2:d2 ¼ ðRþ jXÞI
I ¼ P � jQ

V�
2

P ¼ Pg þ PLoad
Q ¼ Qg þ QLoad

jDV j2 ¼ ðRP þ XQÞ2þðXP � RQÞ2
V2
2

z
ðRP þ XQÞ2

V2
2

(16)

It is obvious from the above equation that neither RP nor XQ is
negligible. Also, since the X/R ratio is small and Q is less than P, the
impact of the active power of WFs or FCPPs on the systemvoltage is
much more than their reactive power.

5. Probabilistic power flow

Regarding the uncertainty in the power systems especially in
load demand and WF output power prediction, it is necessary for
power system planners to use stochastic models. Therefore, in this
paper, probabilistic power flow based on Point Estimate Method
(PEM) is utilized to consider the effects of this uncertainty as much
as possible. PEM was first introduced by Rosenblueth [27]. In the
original PEM, the number of algorithms, which are required to
evaluate a system with n random variables is 2n. Later, Hong [28]
developed an alternative PEM for multivariable system analysis,
which reduced the number of computations from 2n to 2n. Finally,
Morales [24] and Su [29] used Hong’s 2n point estimate method to
implement the probabilistic load flow problem. The deterministic
power flow can be expressed mathematically as follows:

S ¼ FðzÞ (17)

Indeed, the effect of uncertainties, which exist in the load/
generation in the set of input variables (z), will be transformed to
the solution set of output variables (S) through the nonlinear power
flow function F [30]. In the context of probabilistic load flow, the
goal is to find the Probability Distribution Function (PDF) of output
variables S based on the statistical information of z.

In the 2n PEM approach, every uncertain variable is replaced
with only two deterministic points named estimated locations,Zl,1,
Zl,2. The two estimated locations are placed on each side of the
corresponding mean value of the PDF. In particular, (13) is
decomposed into several sub-problems by considering only two
deterministic values for each uncertain variable. Next, the deter-
ministic power flow is run twice for each uncertain variable (i.e. the
value below themean, Zl,2, and the value above themean, Zl,1) while
the other variables are kept at their mean values, mZi .

S ¼ F
�
mZ1 ;mZ2 ;.; Zl;k;.;mZm

	
k ¼ 1;2 (18)

The 2n PEM needs 2n runs of deterministic power flow for n
uncertain variables. In comparison to Monte Carlo approach [31],
this property effectively reduces the computational burden.
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Fig. 1. The membership function for objective functions.

R+jX

V1∠δ1

P+jQ
I

V2∠δ2

Fig. 2. . 2-bus test system.
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The locations Zl,k (k ¼ 1, 2) of the random input variable Zl are
specified values of Zl, which are calculated from its statistical
moments. The only required statistical information are thefirst three
central moments; mean, variance, and coefficient of skewness.
Consider all new frogs 
as initial population

Is the converg

Evaluate the objec
population, sort the ini

divide frog

Select the

Select the worst frog in th
frog bas

Yes

Is con
mem

Stop an

Generate a

No

Are a

Fig. 3. Flowchart
For each solution, when the 2n deterministic load flow are
calculated, the kth moment of the output random variable can be
obtained by multiplying the power of the kth solution by
aweighting factor, whose values depend on the statistical moments
of the input random variables.

This paper focuses on the uncertainties related to RES and load
demands. It is assumed that their statistical features are estimated
or measured, and there is no correlation between input random
variables including active and reactive power generations and load
values.

The procedure to compute the moments of output random
variables in the 2m point estimate scheme are summarized as:

Step 1: Determining the number of input random variables m.
Step 2: Setting EðS1Þ ¼ 0 ; EðS2Þ ¼ 0
Step 3: Setting l ¼ 1.
Step 4: Calculating the skewness coefficient of zl:

ll;3 ¼
E
h
ðzl � mzlÞ3

i
3 (19)
ðsPlÞ
wheremzl, szl, ll;3 are the mean, standard deviation and skewness
coefficient of zl, respectively. Also, E denotes the expectation
operator.
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tive function for the initial 
tial population increasingly and 
s into memeplexes
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e memplex and improve the worst 
ed on section 6.2

No

vergence for the 
plex satisfied? i = i +1
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Table 1
Characteristics of installed RESs.

RES type Capacity (KW) Location Power factor

WF1 500 6 0.9 lag to 0.9 lead
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Step 5: Calculating the two standard locations:

xl;1 ¼ ll;3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ

�
ll;3

�2
s

; xl;2 ¼ ll;3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ

�
ll;3

�2
s

(20)

FCPP1 500 12 0.9 lag to 0.9 lead
FCPP2 300 19 0.9 lag to 0.9 lead
FCPP3 300 28 0.9 lag to 0.9 lead
FCPP4 500 31 0.9 lag to 0.9 lead
WF2 500 71 0.9 lag to 0.9 lead
FCPP5 500 75 0.9 lag to 0.9 lead
WF3 500 79 0.9 lag to 0.9 lead
2 2 2 2

Step 6: Calculating the two estimated locations:

zl;1 ¼ mzl þ xl;1$szl; zl;2 ¼ mzl þ xl;2$szl (21)
Step 7: Running deterministic power flow for both estimated
locations:

Sðl;1Þ ¼ F
�
mz1 ;mz2 ;.; Zl;1;.;mzm

	
S ¼ F

�
m ;m ;.; Z ;.;m

	 (22)

ðl;2Þ z1 z2 l;2 zm

Step 8: Computing the two weighting factors:

ul;1 ¼ �1
m

xl;2
xl;1 � xl;2

; ul;2 ¼ �1
m

xl;1
xl;1 � xl;2

(23)
Step 9: Updating the first and the second moment of output
random variables:
Fig. 4. Single line diagram
E
�
Ski


¼ E
�
Ski

þ

X2
k¼1

ul;k$Siðl;kÞ (24)
Step 10: Repeating steps 4e9 for l ¼ l þ 1 until all uncertain
parameters are taken into account.
Step 11: Computing mean and standard deviation of solution
random variables.

mSi ¼ EðSiÞ; sSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
S2i

� ðEðSiÞÞ2

r
(25)
Once mean and standard deviation of solution random variables
are known, their probability density functions can be approximated
and plotted by Gram-Charlier series approach [32].
of 69 bus test system.



Fig. 6. The hourly active power output of WFs.
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6. Fuzzy model for the multi-objective probabilistic daily
Volt/Var control

As mentioned before, here a fuzzy optimization algorithm is
utilized to solve the multi-objective probabilistic daily Volt/Var
control. The objective functions are modeled by membership
functions to attain the optimal solution [33]. The membership
function for the ith objective function has been shown in Fig. 1. The
ith membership function is defined as follows:

mfiðXÞ ¼

8>>><
>>>:

1 fiðXÞ � fmin
i

fmax
i � fiðXÞ
fmax
i � fmin

i

fmin
i � fiðXÞ � fmax

i

0 fiðXÞ � fmax
i

(26)

wherefmin
i , fmax

i are evaluated by the single optimization of each
objective function, separately.

For multiple objective problems, the fuzzy solution can be
calculated as follows:

ObjectðXÞ ¼ min
h
mf1ðXÞ;mf2ðXÞ;mf3ðXÞ

i
(27)

The maximum value of ObjectðXÞ is considered as the optimal
solution.

7. Shuffled Frog Leaping Algorithm (SFLA)

7.1. The basic concept of SFLA

SFLA is a new member of meta-heuristic search algorithms and
there are a few papers in the literature to address SFLA. This new
algorithm was first introduced by Eusuff and Lansey [34]. Then,
Eusuff et al. developed the SFLA to solve the combinatorial
Fig. 5. Daily energy price and load variations.
optimization problems [35]. Later, SFLA was applied to solve
a mixed-model assembly line sequencing problem [36], clustering
[37], permutation flow shop scheduling problem [38], and general
large-scale water supply system [39]. Also, Elbeltagi et al. compared
the formulations and results of five evolutionary-based algorithms,
i.e. Genetic Algorithms, Memetic Algorithms, Particle Swarm, Ant-
colony systems, and Shuffled Frog Leaping Algorithm [23] to
show the ability of SFLA.

SFLA is based on the natural behavior of frogs searching for food.
A population of memes, which embody the position of frogs is
divided into different subsets called memeplexes. The solution
exploration is based on the local search in each memeplex as well
as global search in the whole population. Firstly, the local search is
performed for a predefined number of iterations. Then, the virtual
frogs are shuffled and reorganized into new memeplexes in
a technique similar to that in the Shuffled Complex Evolution
Algorithm. Moreover, to provide the opportunity for random
generation of improved information, random virtual frogs are
generated and substituted in the population. The local search and
the shuffling process continue until the predefined convergence
criteria are satisfied.

In the original SFLA, the position of the frog with the worst
fitness is adjusted as follows:

Changeing frog positionðDiÞ ¼ randðÞ � ðXbest � XworstÞ (28)

Xnew
worst ¼ Xold

worst þ Di;
Dmin � Di � Dmax

(29)

where rand(.) is a random number between 0 and 1; and Dmin and
Dmax are the minimum and the maximum permitted variation in
the frog’s position. If this process produces a better frog, it replaces
the worst one; else the calculations in Eqs. (27) and (28) are
repeated with respect to the global best frog (i.e. Xglobal replaces
Table 2
Comparison of expected values for average, the best and the worst solutions using
the PSO, SFLA and ISFLA methods.

Objective function Method Average Worst solution Best solution

Emission (Kg) ISFLA 763412557 808543861 719038033
SFLA 786423521 834672464 719038033
PSO 779853216 816493531 719038033

Cost ($) ISFLA 39752642 42367854 36797825
SFLA 40982342 45623412 36797825
PSO 40074376 43917382 36797825

PLoss (Kwh) ISFLA 16091.5 17381.54 15641.92
SFLA 16743.1 17989.1 15641.92
PSO 16094.9 17590.7 15641.92
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Xbest). If no improvement is achieved in the latter case, then, a new
solution is randomly generated to replace the worst frog with
another one having any arbitrary fitness.

7.2. Improved SFLA algorithm

The original SFLA may be trapped in local optima due to its
drawback in finding the worst frog position. In this paper, two new
modifications are employed to overcome the aforementioned
deficiencies. In each memeplex, the position of the frog with the
worst fitness is adjusted as follows:

DXimproved1 ¼ randð:Þ$ðXbest � TF$XMÞ
Xnew
worst ¼ Xold

worst þ DXimproved1
(30)

where, XM is the mean value of individuals in each memeplex. TF is
a heuristically determined constant factor and is chosen randomly
from values 1 or 2. (TF ¼ round [1 þ rand(0, 1)]).

To improve the diversity of the search space vector, a frog Xj is
selected from the population of the frogs such thatXjsXi. Subse-
quently, the position is determined using the following equation.

if f
�
Xj
	 � f ðXiÞ

DXimproved2 ¼ randð:Þ$�Xj � Xi
	

else
DXimproved2 ¼ randð:Þ$�Xi � Xj

	
end

(31)

The new improved individual is generated as follows:

Xnew
i ¼ Xold

i þ DXimproved2 (32)

If the performance of the generated frogs in Eqs. (29) or (31) is
better than the worst frog, it replaces the worst frog. Otherwise
a new solution is generated by a Chaotic Local Search (CLS), as
follows:

At first, the best solution in each memeplex is considered as an
initial solution (X0

cls) for CLS, where X0
cls is scaled into ½0;1�

according the following equation:

X0
cls ¼

h
x1cls;0; x

2
cls;0;.; xncls;0

i
1�n

Cx0 ¼ �
cx10; cx

2
0;.; cxn0

�
cxj0 ¼

xjcls;0 � xj;min

xj;max � xj;min
; j ¼ 1:2;.;n

(33)

Then, the chaos population for CLS is generated as:

Xi
cls ¼

h
x1cls;i; x

2
cls;i;.; xncls;i

i
1�n

; i ¼ 1;2;.;Nchoas

xjcls;i ¼ cxji�1 �
�
xj;max � xj;min

	þ xj;min; j ¼ 1:2;.;n
(34)
Table 3
Daily expected values of electrical energy costs, active power losses and emissions for th

Hour Cost ($) PLoss (kW) Emission (Kg)

1 79009.62 5.895081 2033222
2 182665.8 18.58782 4663561
3 127224.7 11.31563 3361824
4 200661.5 21.373 5290933
5 237994.5 27.71024 6082653
6 237109.7 27.58124 5961293
7 258007 32.11484 6691981
8 408477 73.3804 10251363
9 409725.1 73.67191 10018141
10 820505.7 228.8824 18119649
11 968103.2 309.548 20827389
12 2940409 1186.085 57658000
Sum Cost ¼ 36797825, Sum PLoss ¼ 15641.92, Sum Emission ¼ 719038033
where, cxji indicates the jth chaotic variable and Nchoas is the
number of individuals for CLS. Then, the best solution among them
is replaced with the worst solution. Fig. 3 shows the flowchart of
ISFLA algorithm applied to the Volt/Var control problem.
8. Simulation

To demonstrate the effect of uncertainty in WFs and load
demands on the daily Volt/Var control problem, the 85-bus distri-
bution test feeder shown in Fig. 4 is used as the case study [40]. The
system contains two substations and 11 feeders. The tap position of
voltage regulators ranges from 0.95 to 1.05 with a step of 0.01. The
installation node and capacity of RES are shown in Table 1. The cost
of energy generated by FCPPs and WFs are 0.045, 0.41 ($/MWh),
respectively. The installed capacitors are at infeed buses and buses
#21, #34, #64 and #83 with their maximum capacities of 600 kVar
for infeed buses and 500 kVar for buses #21, #34, #64 and #83with
100 kVar step change. The daily load and energy price variation are
shown in Fig. 5.

Regarding the uncertainty in the load demand, it is assumed
that buses #41 and #58 have discrete distribution. Normal distri-
bution with a constant standard deviation of 5% is considered for
buses #9, #10, #14, #18, #27, #45, #51 and 83. The other feeder
loads are assumed to have deterministic nature (zero standard
deviation).

The random output powers of WFs are modeled with Weibull
distributionwith 5 impulses to calculate themean and the standard
deviation of WFs per hour. The shape and scale parameter of the
distribution parameters can be found in [41]. Using the distribution
parameters, the hourly active power output of WFs is calculated as
shown in Fig. 6.

In order to clearly illustrate the effectiveness of the proposed
method, Table 2 provides a complete comparison among the results
obtained by ISFLA, SFLA and PSO algorithms for the three objective
functions. As shown in Table 2, the smallest and the largest values
of the minimized objective function are referred to as the “Best
Solution” and the “Worst Solution”, respectively. Comparing the
best and the worst solutions of the proposed optimization algo-
rithmwith those of SFLA and PSO methods, the effectiveness of the
proposedmethod is quite obvious. Moreover, the table provides the
average value of the objective functions (minimized) values, based
on ISFLA, SFLA and PSOmethods. It can be noticed from Table 2 that
in the proposed algorithm, the foregoing variables’ values are
assumed considerably smaller than their corresponding values in
SFLA and PSO methods.

Table 3 shows the stochastic daily variation of electrical energy
costs, active power losses and emissions for the best solutions
during the next day. It can be seen that the energy cost, power
e best solutions.

Hour Cost ($) PLoss (kW) Emission (Kg)

13 3677844 1711.083 69008000
14 3687172 1709.803 69008000
15 2580174 968.3539 52210000
16 675098.4 171.3804 15432274
17 541180.7 114.5889 12769003
18 1217346 419.7722 25402254
19 2928514 1197.708 58112000
20 4490236 2343.8 80358000
21 4934294 2706.409 85806000
22 4084196 2011.792 74456000
23 819826 231.6964 18092264
24 292050.8 39.38623 7424228
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losses and the emission follow the variation of the load demands
properly.

Table 4 shows the stochastic optimal dispatch of WFs, FCPPs for
the next day. FCPPs and WFs are installed at heavy loaded buses.
According to Table 4, the DisCo should utilize the installed FCPP4 at
bus #31 in a higher capacity than the other FCPPs installed in the
network to achieve the best plan for most of the following 24 h.
When using WFs, the best schedule is to utilize WF2 and WF3 in
lower capacities than other WFs during the next day. Since WFs
have intermittent characteristics, the best strategy for the DisCo is
to supply the load, especially in highly loaded buses, with sources,
which have lower uncertainty in the output power. The results
show that in general, the DisCo tries to use FCPPs more than WFs
due to their deterministic nature and lower generation cost.

Table 5 shows the optimal hourly dispatch of capacitors and
transformers taps. Although, buses #34 and #64 are heavily loaded,
DisCo’s best strategy is not to use the installed capacitors (C4, C5) in
the mentioned buses for most of the time in the next day. DisCo
should try to compensate the reactive power at bus #34 using
capacitor C5 more than capacitor C4 at bus #64. Capacitors C3 and
C6 are utilized at a higher rate than C4, C5 while they are installed
at low loaded buses #34 and #64. Generally, capacitors C3 to C6
track the load changes, when capacitors C1, C2 cannot follow these
variations during the next day. Moreover, C1 and C2 are installed at
infeed buses and they participate more in controlling DisCo power
factor within the specified range.

In order to show that all constraints are satisfied under the
proposed optimization method, the stochastic values of the volt-
ages throughout the feeders for both light and heavy loaded hours
(9 am and 9 pm) are shown in Fig. 7. In addition, Fig. 8 demonstrates
the standard deviation (SD) of the voltage profile throughout the
feeder for the two mentioned hours. It can be observed from Fig. 7
that the bus voltages are maintained within the permitted range of
tolerance, i.e. �5% of the nominal value by using the probabilistic
multi-objective approach. Furthermore, it is evident from Fig. 8 that
the standard deviation in the heavy loaded hour (9 pm) is more
than the light hour, (9 am). In fact, the standard deviation of volt-
ages increase as the hourly load demand is increased.
Table 5
Daily optimal dispatches of capacitors and transformers with DGs.

Hour Tap1 Tap2 C1 (kvar) C2 (kvar) C3 (kvar) C4 (kvar) C5 (kvar) C6 (kvar)

1 1.04 1.04 600 500 100 0 0 200
2 1.04 1.04 200 400 100 200 200 100
3 1.04 1.04 0 0 200 0 200 300
4 1.04 1.04 300 200 100 100 200 400
5 1.04 1.04 500 0 100 0 200 0
6 1.04 1.04 600 0 200 0 300 0
7 1.04 1.04 200 200 200 0 400 0
8 1.04 1.04 200 0 300 200 400 400
9 1.04 1.04 400 100 300 500 200 400
10 1.04 1.04 200 400 400 300 200 500
11 1.04 1.04 600 100 500 400 400 500
12 1.04 1.04 600 300 500 300 300 500
13 1.04 1.04 500 0 400 100 400 300
14 1.04 1.04 400 500 400 200 0 500
15 1.04 1.04 200 600 200 100 200 300
16 1.04 1.04 400 100 400 400 0 400
17 1.04 1.04 0 200 200 200 500 500
18 1.04 1.04 0 0 500 300 500 300
19 1.04 1.04 600 100 400 400 400 300
20 1.04 1.04 300 400 500 400 300 500
21 1.04 1.04 100 300 500 400 400 500
22 1.04 1.04 100 500 500 400 500 500
23 1.04 1.04 200 0 200 200 300 500
24 1.04 1.04 300 500 200 200 300 0

(Tap1 and Tap2 are the tap positions of LTC transformers)



Fig. 7. Stochastic voltage profile throughout the feeder for both light and heavy loaded hours, 9 am and 9 pm.

Fig. 8. Standard deviation of voltage profile throughout the feeder for both light and heavy loaded hours, 9 am and 9 pm.
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In order to consider the effect of uncertainties of the load/
generation on the feeders’ voltage profile, the standard deviation of
the voltage for some buses in the substations 1 and 2 are selected
and shown in Figs. 9 and 10. As shown, SD in the buses with WFs is
the largest while SD in deterministic buses is the smallest.
However, the value of SDs in buses with discrete distribution load
increases dramatically as the load demand increases.

The probability density function of the voltage at 9 am for buses
# 51, # 58, # 77, # 79 is shown in Fig. 11. It is clear that the proposed
Fig. 9. Standard deviation of voltages
method effectively maintains the value of voltages within the
permitted range.

AlthoughWFs are emission-free resources, they introduce more
uncertainty than load values in planning the best strategy of DisCo
for the next day. In fact, FCPPs produce emission, but they do not
introduce uncertainty in distribution systems and are more reliable
to be used by DisCos. The simulation results show that the combi-
nation ofWFs and FCPPs can effectively improve the performance of
the system.
for some buses in substation 1.



Fig. 11. Probability density function of voltages at 9 am for buses # 51, # 58, # 77, # 79.

Fig. 10. Standard deviation of voltages for some buses in substation 2.
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9. Conclusion

This paper presented a new probabilistic multi-objective
approach for the daily Volt/Var control in distribution systems
regarding the hybrid use of fuel cell and wind energy sources. The
uncertainty in the load demands and the electrical power gener-
ated by WFs was taken into account. Point Estimate Method (PEM)
was used as an effective probabilistic power flow method to deal
with the random behavior of WFs and load demands simulta-
neously. The cost of generating electrical energy, electrical energy
losses, and the total emission were included in the objective
function. The multi-objective optimization problem was solved
using fuzzy optimization method with the max-min operator. A
new optimization algorithm based on Improved Shuffled Frog
Leaping Algorithm (ISFLA) was proposed to determine the DisCo’s
strategy, which is optimal from economical, operational, and
environmental perspectives. A practical 85 bus distribution system
was used to show the effectiveness of the methodology under light
and heavy loaded hours. The simulation results show that the
voltage magnitude of buses and substation power factors are in the
desired limits. Moreover, the proposed optimizationmethod is very
precise and can be used in practical systems. Also, DisCos relying on
wind farms for power generation can benefit from this study.

References

[1] Bourouni K, Ben M’Barek T, Al Taee A. Design and optimization of desalination
reverse osmosis plants driven by renewable energies using genetic algo-
rithms. Renewable Energy 2011;36(3):936e50.

[2] Niknam T, Zeinoddini Meymand H, Nayeripour M. A practical algorithm for
optimal operation management of distribution network including fuel cell
power plants. Renewable Energy 2010;35:1696e714.
[3] Snyder B, Kaiser MJ. Ecological and economic cost-benefit analysis of offshore
wind energy. Renewable Energy 2009;34(6):1567e78.

[4] Baron ME, Hsu MY. Volt/var control at distribution substations. IEEE Trans-
action on Power Systems Feb. 1999;14(1):312e8.

[5] Niknam T. A new approach based on Ant colony optimization for daily volt/var
control in distribution networks considering distributed generators. Energy
Conversion and Management 2008;49:3417e24.

[6] Niknam T. An efficient optimization algorithm based on ACO for daily volt/var
control in distribution networks considering DER. Journal of Intelligent and
Fuzzy Systems 2008;20:119e32.

[7] Niknam T, Ranjbar AM, Shirani AR. A new approach based on Ant algo-
rithm for volt/var control in distribution network considering distributed
generation. Iranian Journal of Science & Technology, Transaction B 2005;
29:1e15.

[8] Niknam T, Ranjbar AM, Shirani AR. An approach for volt/var control in
distribution network with distributed generation. International Journal of
Science and Technology, Scientia Iranica 2005;12:34e42.

[9] Niknam T, Bahman Firouzi B, Ostadi A. A new fuzzy adaptive particle swarm
optimization for daily volt/var control in distribution networks considering
distributed generators. Applied Energy 2010;87:1919e28.

[10] Carvalho PMS, Correia PF, Ferreira LAFM. Distributed reactive power gener-
ation control for voltage rise mitigation in distribution networks. IEEE
Transaction on Power Systems 2008;23:766e72.

[11] Madureira AG, Lopes JAP. Coordinated voltage support in distribution
networks with distributed generation and microgrids. IET Renewable Power
Generation 2009;3:439e54.

[12] Viawan FA, Karlsson D. Voltage and reactive power control in systems with
synchronous Machine-based distributed generation. IEEE Transaction on
Power Delivery 2008;23:1079e87.

[13] Su CL. Comparative analysis of voltage control strategies in distribution
networks with distributed generation. IEEE/PES General Meeting; 2009:1e7.

[14] Senjyu T, Miyazato Y, Yona A, Urasaki N, Funabashi T. Optimal distribution
voltage control and coordination with distributed generation. IEEE Trans-
action on Power Delivery 2008;23:1236e42.

[15] J. Hethey, S. Leweson, Probabilistic Analysis of Reactive Power Control
Strategies for Wind Farms, Master thesis, Technical University of Denmark,
2008.

[16] P. Chen, Z. Chen, B. Bak-Jensen, R. Villafáfila, S. Sörensen, Study of power
fluctuation from Dispersed generations and loads and its impact on a distri-
bution network through a probabilistic approach, Proceeding of 9th Interna-
tional conference on electric power quality and utilization. Barcelona, 9e11,
October 2007.

[17] Morales JM, Perez-Ruiz J. Point estimate schemes to solve the probabilistic
power flow. IEEE Transaction on Power Systems 2007;22:1594e601.

[18] Hatziargyriou ND, Karatsanis TS. Distribution system voltage and reactive
power control based on probabilistic load flow analysis. IEE Proceedings
Generation Transmission Distribution July. 1997;144:363e9.

[19] Hatziargyriou ND, Karakatsanis TS, Lorentzou MI. Voltage control settings to
increase wind power based on probabilistic load flow. Electrical Power and
Energy Systems 2005;27:656e61.

[20] Bie Z, LI G, Liu H, WANG X, WANG X. Studies on voltage fluctuation in the
integration of wind power plants using probabilistic load flow. Proceedings
IEEE/PES General Meeting; 2008:1e7.

[21] Hong YY, Luo YF. Optimal VAR control considering wind farms using proba-
bilistic load-flow and gray-based genetic algorithms. IEEE Transaction on
Power Delivery July 2009;24:1441e9.

[22] Su C. Stochastic evaluation of voltages in distribution networks with distrib-
uted generation using Detailed distribution operation models. IEEE Trans-
action on Power Systems May 2010;25:786e95.

[23] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based
optimization algorithms. Advanced Engineering Informatics 2005;19:43e53.



A.R. Malekpour et al. / Renewable Energy 39 (2012) 228e240240
[24] Morales JM, Baringo L, Conejo AJ, Mỉnguez R. Probabilistic power flow with
correlated wind sources. IET Generation Transmission Distribution 2010;4:
641e51.

[25] Marwali MKC, Ma H, Shahidehpour SM, Abdul-Rahman KH. Short-term
generation scheduling in photovoltaic- utility grid with battery storage. IEEE
Transactions on Power Systems 1998;13:1057e62.

[26] Shen M, Meuleman W, Scott K. The characteristics of power generation of
static state fuel cells. Journal of Power Sources 2003;115:203e9.

[27] Rosenblueth E. Point estimate for probability moments. Proceedings of
National Academy of Science of United States of America 1975;72:3812e4.

[28] Hong HP. An efficient point estimate method for probabilistic analysis. Reli-
ability Engineering and System Safety 1998;59:261e7.

[29] Su C. Probabilistic load-flow computation using point estimate method. IEEE
Transaction on Power Systems November 2005;20:1842e51.

[30] Caramia P, Carpinelli G, Varilone P. Point estimate schemes for probabilistic
three phase load flow. Electric Power Systems Research 2010;80:168e75.

[31] Zhang P, Lee ST. Probabilistic load flow computation using the method of
combined cumulants and Gram-Charlier expansion. IEEE Transaction on
Power Systems Feb 2004;19:676e82.

[32] Li G, Zhang X. Comparison between two probabilistic load flow methods for
reliability assessment. IEEE Power & Energy Society General Meeting;
2009:1e7.

[33] Niknam T, Olamaie J, Khorshidi R. A hybrid algorithm based on HBMO and
fuzzy set for multi-objective distribution feeder reconfiguration. World
Applied Sciences Journal 2008;4:308e15.
[34] Eusuff M, . Lansey K. Optimization of water distribution network design using
the shuffled frog leaping algorithm. Journal of Water Resources Planning and
Management 2003;129:10e25.

[35] Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-
heuristic for discrete optimization. Engineering Optimization 2006;38:
129e54.

[36] Rahimi-Vahed A, Mirzaei AH. A hybrid multi-objective shuffled frog-leaping
algorithm for a mixed-model assembly line sequencing problem. Computers
& Industrial Engineering 2007;53:642e66.

[37] Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithm
on clustering. International Journal of Advanced Manufacturing Technology
2009;45:199e209.

[38] Rahimi-Vahed A, Dangchi M, Rafiei H, Salimi E. A novel hybrid multi-objective
shuffled frog-leaping algorithm for a bi-criteria permutation flow shop
scheduling problem. International Journal of Advanced Manufacturing Tech-
nology 2009;41:1227e39.

[39] Chung G, Lansey K. Application of the shuffled frog leaping algorithm for the
optimization of a general large-scale water supply system. Water Resources
Management 2009;23:797e823.

[40] Ahuja A, Das S, Pahwa A. An AIS-ACO hybrid approach for multi-objective
distribution system reconfiguration. IEEE Transactions on Power Systems
2007;22(3):1101e11.

[41] K. A. Denise, D’. Arnaud, Optimization of renewable energy resources (RERs)
for Enhancing network performance for distribution systems, Master thesis,
Howard University, 2010.


	 Probabilistic approach to multi-objective Volt/Var control of distribution system considering hybrid fuel cell and wind ene ...
	1 Introduction
	2 Problem formulation
	2.1 Decision variables
	2.2 Objective functions
	2.2.1 Total electrical energy costs generated by FCPPs, WFs and DisCos
	2.2.2 Total electrical energy losses
	2.2.3 Emission generated by DisCo, WFs, and FCPPs

	2.3 Constraints
	2.3.1 Distribution power flow equations
	2.3.2 Hourly limits on WFs and FCPPs’s active power
	2.3.3 Hourly limits on WFs and FCPPs’s reactive power
	2.3.4 Line flow limits
	2.3.5 Limits on the transformers’ tap
	2.3.6 Hourly limits on capacitors reactive power
	2.3.7 Hourly limits on DisCo power factor
	2.3.8 Hourly limits on bus voltage magnitude


	3 Modeling RES in distribution systems
	3.1 Wind farms (WFs)
	3.2 Fuel cell power plants (FCPPs)

	4 The effect of WFs and FCPPs on voltage profile of distribution networks
	5 Probabilistic power flow
	6 Fuzzy model for the multi-objective probabilistic daily Volt/Var control
	7 Shuffled Frog Leaping Algorithm (SFLA)
	7.1 The basic concept of SFLA
	7.2 Improved SFLA algorithm

	8 Simulation
	9 Conclusion
	 References




