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This paper proposes a novel supervised learning method for single-layer feedforward neural networks.
This approach uses an alternative objective function to that based on the MSE, which measures the
errors before the neuron’s nonlinear activation functions instead of after them. In this case, the solution
can be easily obtained solving systems of linear equations, i.e., requiring much less computational
power than the one associated with the regular methods. A theoretical study is included to proof the
approximated equivalence between the global optimum of the objective function based on the regular
MSE criterion and the one of the proposed alternative MSE function.

Furthermore, it is shown that the presented method has the capability of allowing incremental and
distributed learning. An exhaustive experimental study is also presented to verify the soundness and
efficiency of the method. This study contains 10 classification and 16 regression problems. In addition, a
comparison with other high performance learning algorithms shows that the proposed method
exhibits, in average, the highest performance and low-demanding computational requirements.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For a single-layer feedforward neural network, with linear
activation functions, the weight values minimizing the mean-
squared error function (MSE) can be found in terms of the pseudo-
inverse of a matrix [1,2]. Furthermore, it can be demonstrated that
the MSE surface of this linear network is a quadratic function of
the weights [3]. Therefore, this convex hyperparaboloidal surface
can be easily traversed by a gradient descent method. However, if
nonlinear activation functions are used then local minima can
exist in the objective function based on the MSE criterion [4-6]. In
[7] it was shown that the number of such minima can grow
exponentially with the input dimension. Only in some specific
situations it is guaranteed the lack of local minima. In the case of
linearly separable patterns and a threshold MSE criterion, it was
proved the existence of only one minimum in the objective
function [8,9]. Nevertheless, this is not the general situation.

The contribution of this work is to present a new convex
objective function, equivalent to the MSE, that does not contains
local minima and the global solution is obtained using a system of
linear equations. This system can be solved, for each output, with
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a complexity of O(N?), where N is the number of parameters of the
network.

The problem of local minima for one-layer networks was
rigorously demonstrated in [5], where an example with a sigmoid
transfer function, for which the sum of squared errors presents a
local minimum, is given. They pointed out that the existence of
local minima is due to the fact that the error function is the
superposition of functions whose minima are at different points.
In this situation, a closed form solution is no longer possible.

Previous approaches, during the last decades, have been
presented to overcome the problems emerged by the presence
of these stationary points in single-layer neural networks. In [10],
a globally convergent natural homotopy mapping is defined for
single-layer perceptrons by deformation of the node nonlinearity.
This homotopy tracks a possibly infinite number of weights by
transforming coordinates and characterizing all solutions by a
finite number of distinct and unique solutions. Although this
approach ensures computation of a solution, it does not provide
global optimization [1]. At the same time, these authors proposed
in [11] a method for both the a posteriori evaluation of whether a
solution is unique or globally optimal and for a priori scaling of
desired vector values to ensure uniqueness, through analysis of
the input data. Although these approaches are potentially helpful
for evaluating optimality and uniqueness, the minima are
characterized only after training is complete. In addition, other
authors have proposed methods for different criteria from the
MSE to avoid the problem of local minima in the objective
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" nction to minimize. In this sense, in [12] it was proposed an on-
line additive learning method for matching cost functions based
on the Bregman divergence.

Pao [2] proposed the functional link approach that obtains an
analytical solution of the weights establishing a system of linear
equations Xw=z, where X is a matrix formed by the input
patterns, w is the weight vector and z is another vector formed by
the inverse of the activation function applied over the desired
output. The dimensions of matrix X are S x N, where S is the
number of training patterns and N is the number of weights. As
Pao mentions in his work, if S= N and the determinant of X is not
zero then the solution can be obtained by w = X~1z. However, this
is not the common situation, because in real data sets usually
S>N or S<N. For these last cases, Pao analyzes the situation
separately. In the case S <N, a large number of solutions could be
obtained (perhaps an infinite number of them) which is not
obviously desired. He proposed a partition of X to avoid in some
way this problem. In the other case, S>N, an infinitely
large number of orthonormal functions could be generated, and
then a method based on the pseudoinversion is proposed
(w= (X"X)"1X"z). However, as he already mentions, this formula-
tion could be often unacceptable as is indicated by the high error
value at the end of the learning process.

Some studies for multilayer feedforward neural networks have
used similar results to the one proposed in [2] for the back-
propagation of the desired output or for the learning of the
weights of the output layer. Specifically, there have been heuristic
proposals of least-squares initialization and training approaches
[13-17]. Of special interest is [15], where three least-squares
initialization schemes were compared for speed and performance.
Nevertheless, these methods did not rigorously consider the
transformation of the desired output through the nonlinear
activation functions as they did not take into account the scaling
effects of the slopes of nonlinearities in the least squares problem.
This is an important issue as it will be discussed later.

Lastly, in a previous paper [18], a new learning method, for
single-layer neural networks, based on a system of linear
equations was presented. This approach is possible due to the
use of a new objective function that measures the sum of the
squared errors before the nonlinear activation functions instead of
after these functions, as it is usually done. Although the
experimental results presented in this previous work support
the validity and soundness of the proposed method, some
theoretical research was still necessary to proof the equivalence
between the global optimum of the objective function based on
the MSE after the nonlinearities and the proposed objective
function (minimization of the MSE before the nonlinear func-
tions). This paper completes the mentioned research presenting a
theoretical analysis and considering in the objective function the
scaling effects of the slope of the nonlinear transfer function.
Besides, a new set of linear equations, to obtain the optimal
weights for the problem, are derived.

2. Description of the proposed method

The architecture of the considered neural network is shown in
Fig. 1. The inputs are denoted as x;; and outputs as y;; being
i=0,1,...,I;j=1,2,...,Jands=1,2,...,S. The numbers I, J and S
represent the number of inputs, outputs and training samples,
respectively. The network contains only a single layer of J output
neurons with nonlinear activation functions fi, f5, . . ., f;. The set of
equations relating inputs and outputs is given by

1
Yis :f)-(zjs) :f}' <Z VVjixis> > j: 1,2, s

i=0

J,s=1,2,...8, M
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Fig. 1. Architecture of a single-layer feedforward neural network.

where wjo and wj;, i=1,2,...,], are, respectively, the bias and the
weights associated with neuron j (for j=1,2,...,]). The system
presented in (1) has J x S equations and J x (I+1) unknowns. In
practice, since the number of data is large (S> I+ 1), this set of
equations does not have a solution, and consequently, it cannot be
solved analytically.

Thus, the widely employed approach to obtain the optimal
weights is based on the optimization, by means of an iterative
procedure, of an objective function that measures the errors
obtained by comparing the real output of the network and some
desired response.

2.1. Regular objective function: mean-squared error
after nonlinearities

Currently, different objective functions have been proposed
being one of the most used that based on the mean-squared error
(MSE) criterion. This is the function considered in this work. Thus,
the usual approach is to consider some errors, ¢j; measured after
the nonlinearities. Therefore, the set of equations relating inputs
and outputs is now defined as

|
&s = djs—Yjs = djs—f; <Z VVjixis>> j=12,...,], s=12,...,S,

i=o
2
where dj; is the desired output for neuron j and the training

pattern s. To estimate (learn) the weights, the sum of squared
errors defined as

s I 2
B=3y <djs—)§ (z w>> 3
1 s =

=1 i=o

s
MSEA= "
s=1j=
is minimized. There exists many gradient descent methods that
can be used to obtain a saddle point of this function.

It is important to note that, due to the presence of the
nonlinear activation functions f;, the function in (3) is nonlinear in
the weights. In this situation, the absence of local minima in MSEA
is not guaranteed, as was demonstrated in [5]. Therefore, a
gradient descent method can be stuck in a local minimum instead
of achieving the global optimum of the objective function.

2.2. New objective function: mean-squared error
before nonlinearities

In order to avoid the problems mentioned in the previous
section, a new approach for the supervised learning of single-layer
feedforward neural networks is proposed. This method is based
on the use of an alternative objective function that measures the
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the zj instead of the y;; variables as it is graphically illustrated
in Fig. 1.

In a previous work [18], these alternative errors were already
used for the learning of single-layer neural networks. However,
two main theoretical issues were not taken into account:

e The influence on the slope of the nonlinear activation functions
in the errors considered in the objective function. In this new
research, it will be demonstrated that the scaling effects of
these functions can be calculated to obtain a most accurate
solution when the variability of the error is small.

e The equivalence between the solution obtained considering
the errors after and before the nonlinear function. This analysis
is presented in this paper, taking into account the effects
mentioned in the previous item.

Other authors have used the errors before the nonlinear activation
function for the initialization or learning of multilayer feedfor-
ward neural networks [13-17]. However, all these previous
approaches did not also take into account the scaling effects of
the slope of the nonlinear activation functions in the errors
measured before these functions. In this work, a new objective
function, that considers the influence of the slope, and a novel
learning method based on this objective function are presented.
In addition, it is rigorously proved that the solution obtained
is approximatively the same as using the objective function
based on the regular mean-squared error. This fact is showed
in Theorem 1. Given that, for each output j, the weights
w;;, 1=0,1,...,I are related only to the output yj it is clear
that the problem of learning the weights can be separated into
J independent problems (one for each output j). Thus, for
notational simplicity, in what follows only one of these problems
(for a fixed j) will be dealt with.

Theorem 1. Letx;; (i=1,...,I, s=1...,5) be the inputs of a single-
layer feedforward neural network, di; and y;; be the desired and real
output for the output neuron j and the pattern s, wj; be the weights,
and f;, )j.*l, f; be the nonlinear function, its inverse and its derivative.
Then, the minimization of the MSE between dj; and yj; at the
output of the nonlinearity is approximately equivalent, up to first
order of a Taylor series, to minimizing the MSE before the
nonlinearity, ie., between zjm Zf;o w;ix;s and Ejs = f}fl (djs)
weighted according to the value of the derivative of the nonlinearity
at the corresponding operating point. Mathematically, this property
can be written as

S S
minMSEA; m 3 (djs—fj(25))” ~ minMSEB; m > (f Wjs)(ds—25))"

s=1 s=1

4
or equivalently
s I 2
MinMSEA; = > <dj3 —f; <Z wﬁxis>>
I s=1 i=0
s _ i 2
~ MIinMSEB; = [ | <ﬂ 28] <)§1(djs)_ [ | wﬁxis>> .
I s=1 i=0
| &)}
Proof. Considering the regular MSE minimization problem:
s
n‘}g,nMSEAj - .(djs —¥is)? @l

s=1
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- i <djs—15' <i Wjixi5> > 2

s=1 i=0

and employing y;; = f(z;) and d;; = );-(Ejs) in the right-hand side of
Eq. (6), the following equivalent minimization problem can be
obtained:

s s
minMSEA; = 3 A~y = 3 (idi)~fi@or" 18
S= s=
Let Ejs = )j.*l(djs) be the desired output before the nonlinear
functions, thus the error before the output neuron can be defined
as g :Ejs—zjs :fj.*l(djs)— Zf;o W;ix;s. If the variability of this
error (var(g;)) is small then the following first order Taylor series
approximation on each component of the output vector can be

used:
[i@o) = fi(d;s—Ejs) ~ fi(djs)—f; kjs)Es- ()}

Substituting the right-hand side of Eq. (9) in Eq. (8), it can be
obtained the desired result:

S S
minMSEA; = [Jl]d;s—f(z:)” ~ minMSEB; = (7 id0E:)”  (10)

s=1 s=1

or

s I 2
n‘}/}f,nMSEAj - <dj3 —f; <Z VVjixis>>

s=1 i=0

s I 2
A H‘}E,UMSEB)' - Zl <ﬂ (djs) <)§1 (djs)— 2} VVjixis>> .o
S= 1=

an

The previous theorem is an important result because it

establishes that the minimization of the mean-squared error at

the output of the network is equivalent (up to first order) to the

minimization of the error before the output neurons scaled by a

factor f} |Ejs). This factor ensures that each error, corresponding to

an input—output pair of the training set, is weighted appropriately

according to the value of the nonlinear activation function at the

corresponding point of the desired response. All the previous

works failed to take into account this scaling factor, because they

simply reflected the desired response to the input of the

nonlinearity. This is not the best approximation if the variability

of the error is small, as it is demonstrated in Theorem 1, because

the scaling effect of the nonlinearity on the variance of the error
should be considered.

As a result of this theorem, it is possible to use, alternatively, any
of the minimization problems shown in (5) for the learning process
of the neural network. This result is the basis of the method
proposed in this work. The only requirement for this alternative
minimization problem is that the activation functions must be
invertible. However, this is not a very restrictive condition because
most used activation functions in neural networks, like for example
the sigmoid function, are invertible. The important consequence of
the described theorem is that if the minimization problem on the
right-hand side of Eq. (5) is used, then its solution can be obtained
easily because it is a convex optimization problem. Hence, the
absence of local minima is assured in this situation. In this case, the
system of equations described previously in Eq. (2) can be rewritten
in the following way:

1
Ejs: js_ﬁzjs:_frl(djs)_ZV\/jixis» Szlszu---us> jzlszu---uju
i=0

12

that measures the errors in terms of the inputs (x;). It is important
to note that in Eq. (12), the unknowns (weights of the network) are
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7ot affected by the activation function (fj) and, thus, the error is
linear with respect to the parameters of the network. Then, the aim
is to minimize the following alternative objective function
MSEB;, Vi =1,....J:

s s I 2
MSEB; = [ Ndi)Ei)* = > <ﬂ 1)) <)§1(djs)— Zwﬁxis» :

s=1 s=1 i=0

13)

The global optimum of this convex objective function can be
easily obtained computing its derivative with respect to the
weights of the network and setting the derivative to zero:

OMSEB; S _ ! _
oW, ) Z <ﬂ Idjs) <);1 (djs)_ Z Wjixis> >xpsﬂ ldjs) =0,

s=1 i=0
p=01,....1, n4

that can be rewritten as follows:

I
> Aiwji=by, p=01,..,], 115
i=0

where  Ayim 375 Xiskpsf'F (djs), by
i = £l

For the output j, the system (15) has I+1 linear equations and
unknowns and, thereby, there exists only one real solution
(except for ill-conditioned problems) which corresponds to the
global optimum of the objective function.! Several computation-
ally efficient methods can be used to solve this kind of systems
with a complexity of O(N?), where N=I+1 is the number of
weights of the network for the output j [19,20].

One of the main differences of this method and the one
presented previously by Pao [2] is the dimension of the system of
linear equations. The approach by Pao uses a nonsquared system
(S x Ny while in this case the system is squared (N x N), where S is
the number of patterns and N the number of weights. This is an
important advantage because, independently of number of
training patterns S, the system always has an unique solution.
As was explained in Section 1, if the system is not squared the
underdetermined and overdetermined cases can generate non-
accurate and multiple solutions.

Finally, other interesting characteristics of the proposed
learning method are its incremental and distributed nature. This
can be clearly checked by observing Eq. (15). The coefficients (A;
and by;) are calculated as a sum of terms in function of the points
(input-desired output) of the data set; therefore, and due to the
commutative and associative properties of the sum, the same
solution is obtained independently of the order and occurrence of
the data points. Also, M networks can be trained in different
computers with partial data sets (D;, D, ...,Dy) and afterwards a
single network representing the union of the M networks could be
obtained. This can be achieved by summing the corresponding M
matrices of coefficients of all the networks and obtaining the
weights for this new matrix.

Z?Z 1 Ejsxpsf/jz (Ejs) and

3. An illustrative example

In this section, an example is presented to illustrate the
characteristics of the proposed objective function (MSEB), com-
pared with the regular mean-squared error (MSEA), and the
behavior of the derived learning method. In order to do this, a
simple topology was used, consisting of a one-layer neural

1 MATLAB" demo code available at http://www.dc.fi.udc.es/lidia/downloads/
LLM
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activation function, one weight (w;) and one bias (wy). The goal oi
this network is to learn the desired function d = x+ 3sin(x) +log(x)
normalized in the interval [0.05,0.95]. Fig. 2 shows, for this
example, the 3D-surface of the MSEA objective function and the
one for the alternative MSEB. As can be seen, the new function is
convex and its global optimum is approximately at the same point
as that of the MSEA objective function. Also, in this figure is
represented the error trajectory along training of the Levenberg-
Marquardt (LM) algorithm, using the MSEA objective function,
from two different initial states:

e In the first case, represented by the symbol (1), the method
begins from the initial point defined by w= —0.65 and b = 0.9.
In this situation the learning algorithm is capable of descend-
ing in the error surface to get a value near the global optimum.

e In the second case, indicated by the symbol (2) and the
triangle, the same method begins from the initial point defined
by w=—1.1 and b= 0.1. As can be observed, the method is not
able to get the global minimum but is trapped in a plateau of
the error function.

Fig. 3 depicts the level curves for the MSEA objective function
and its global optimum (represented by a x-mark). This figure

6 __ 1 ]
045 o
\ ~ MSEA .
04 . N, o
P
035 i a
) @
5 o3 e w
8 .
Sos
z
8§ 02
015
- MSEB
0.1 / i
005 '
0.
10
Y%, 0

-10 1 05 0
weight (w)

Fig. 2. Example of the regular objective function based on the MSE and the
proposed objective function.
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‘
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Fig. 3. Level curves near the global minimum of the MSE function.
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proposed learning method using the MSEB. As can be seen, the
proposed method obtains a close approximation to the global
optimum of the MSEA, and it improves the value obtained by the
approach using the MSEB without the scaling term of the slopes of
the activation functions, as was previously presented in [18].

4. Simulations

Several experiments were carried out to check the efficacy of
the proposed method and its speed to get the global optimum. In
order to accomplish this analysis several data sets were used for
classification and regression problems and the proposed method
was compared to some other relevant techniques. Although
single-layer neural networks can use nonlinear activation func-
tions in their unique layer (output layer), their discriminating
capability is still linear as it was demonstrated by Minsky and
Papert [21]. Thus, all the approaches were selected so as to have
similar capacities to a single-layer neural network in terms of
linear classification. In order to estimate the true error, a 10-fold
cross-validation was employed for all cases. In addition, 50
random simulations were performed to obtain a mean value and a
standard deviation for each case. The simulations were performed
using MATLAB® and the method used to solve the system of
linear equations in Eq. (15) was a general triangular factorization
computed by Gaussian elimination with partial pivoting (LU
matrix factorization).

4.1. Comparative analysis with the previous approach

The first experiment was carried out using 16 regression data
sets. The aim in this kind of problems is to predict a future data
point of a time series employing some previous samples. In order
to perform this, each time series was preprocessed to transform
the one-dimensional signal into a set of I-dimensional input
patterns and one-dimensional desired output. This was accom-
plished employing a sliding window procedure and for all data
sets I was equal to six. The topology of the one-layer neural
network is determined by the dimension of the input and output
data. Two different activation functions were employed: the
hyperbolic tangent sigmoid function and the logarithmic sigmoid
function. Although the results obtained for both were slightly
different, the comparative study among the different approaches
is equivalent for the two cases. For that reason, only the results
obtained using hyperbolic tangent sigmoid function are shown in
tables below.

Table 1 includes the benchmarking data sets employed in this
experiment and the number of samples employed for each one.
The first five data sets were obtained at Eric’s Home page,? the
next three were from StatLib Datasets Archive,® the Annulus data
set from Eric Weeks’s Chaotic Time Series repository* and the last
ones from the Time Series Data Library.®

In order to carry out the comparative study, the weights of the
single-layer neural network were obtained using the proposed
method and the previous version presented in [18]. In addition, the
least squares support vector machine (LS-SVM) [22], with linear
kernels and regularization parameter equal to 0.1, was included in
the comparative analysis, as it is one of the state-of-the-art
approaches in the machine learning field and also leads to a convex
optimization problem. The optimal value of the regularization

2 Available at http://www.cse.ogi.edu/ ~ ericwan/data.html

3 Available at http://lib.stat.cmu.edu/datasets

4 Available at http://www.physics.emory.edu/ ~ weeks/research/tseries1.html
5 Available at http://www-personal.buseco.monash.edu.au/ ~ hyndman/TSDL
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Table 1
Characteristics of the regression data sets.

Data set Samples
Henon (chaotic time series generated by code)? 3000
Lorenz (chaotic time series generated by code)? 3000
Mackey-Glass (chaotic time series generated by code)? 2000
Ikeda (chaotic time series generated by code)? 2000
Laser K.U. Leuven (laser time series from Santa Fe Competition)? 1900
Dow-Jones (Dow-Jones Industrial Average closing values)? 5000
Saubts (recording of the height of ocean waves as a function of time)> 4096
Lmpavw (vertical ocean shear time series)> 6875
Annulus (chaotic time series from a rotating annulus sketch)* 3000
Kobe (seismograph of the Kobe earthquake, recorded at Tasmania)® 3042
Imports (monthly Australian imports from Japan)® 334
Co2 (monthly measurements of carbon dioxide above Mauna Loa, 378
Hawaii )®

Oscillation (monthly measurements of differences in sea-surface air 1229
pressure between Darwin and Tahiti)®

Blowfly (bi-daily blowfly population in glass jar)® 355

TreeRings (normalized tree-ring widths in dimensionless units, 1453
years: 525-1983)°

Waves (forces on a cylinder suspended in a tank of water)® 314

parameter was obtained using cross-validation. Specifically, the LS-
SVMlab Matlab Toolbox® (version 1.5) implemented by Pelckmans
et al. was employed. Table 2 shows the mean training MSE and
standard deviation obtained for each data set over the 50
simulations. Table 3 shows the same results but for the mean test
MSE (true MSE estimated by cross-validation) and standard
deviation obtained for each data set. The boxes in these tables
indicate the best result comparing only the proposed and the
previous approach. The black down triangles indicate the cases
where the LS-SVM obtains worse results than the proposed method.
Analyzing these tables, the following issues can be observed:

e The proposed method obtains, in general, better results
(10 cases of 16) than the previous version. The mean
percentage of improvement in the test MSE is 19.19%, for
those cases in which the proposed method performs better,
while the degradation percentage is only of 3.66% in the other
cases. The cases (6 of 16) in which the previous approach is
working better than the new one is due to the relative high
magnitude of the error. It is worth noting that the smaller the
term €, (error measured before the activation function), the
more accurate the Taylor series approximation used in Eq. (9).
Thus, when the error is relatively high the approximation is
not so exact. As can be observed in Tables 2 and 3, these are the
cases in which the previous approach is working better.
Specifically, analyzing the test errors (Table 3) the proposed
method achieves better results when the error is approxi-
mately lesser than 2.224e2 (see the TreeRings compared to
Imports and Waves data sets). So, it seems that around that
value is the threshold that determines which method is the
most accurate. Anyway, in the six cases in which the previous
approach is working better in half of them the differences are
very small (see TreeRings, Oscillation and Mackey data sets).

e In 9 of 16 cases the proposed method obtains better results
than the LS-SVM with a mean percentage of improvement in
the test MSE of 86.33%. Therefore it can be considered as
an interesting method in the field of machine learning. In
addition, it allows incremental and distributed training,
in contradistinction to many of the standard algorithms.
Thus, it can be used in a real time learning environment or

6 Available at http://www.esat.kuleuven.ac.be/sista/lssvmlab/
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Mean training MSE + standard deviation using hyperbolic tangent activation functions.

| Data set ] Proposed | Previous | LS-SVM |
Henon 2.083e~ 1 £ 9.81e7 ‘ 1.867e ' £ 1.14e7° | | 1.891e™! +8.85¢7¢
Lorenz 6.281¢7 + 1.69¢ 8| | 7.700e? £3.26e5 | 6.872e 4+ 1.23¢7% ¥
Mackey 3.007e 2+ 2426 | [2.914¢2+243¢6| | 3.188¢ 2+ 2.13¢ 6 ¥
Ikeda 171671+ 1.38¢™ | |1.648¢ 1 +1.36e77| | 1.643e7 !+ 1.38¢7°
Laser 4.202¢7* £ 3.76e8 4.816e %+ 5.13¢" 1.914e73+£5.27¢ % ¥
DowJones | |2.974e 4 £5.17e7 || 4.484e 4 +£1.12¢78 | 2.860e™° + 3.37¢~10
Saubts 8.022¢ % 4 2.22¢78 9.125¢ %4 3,708 1.109e 3+ 1.94¢ % ¥
Lmpavw 5.327e 4 £ 1.54e78 | | 6.87de £ 2.74e7% | 3.534e 4 £ 1.07e 8
Annulus 3.461e ™ £1.94¢ 8| | 4.109¢ 4 £2.39¢7% | 5.399¢71 £ 4.80e7 " ¥
Kobe 5.963¢ 1+ 3.53¢78| | 6.394e71 £ 4.67¢7® | 44463 £1.24c77 ¥
Fports 116662+ 1.02¢° | | 1.256e~2 + 1.09¢=® | 8.820¢3 + 4.66¢~°
Co2 1.866e¢73 £ 5.43¢77 | | 2.239¢73 £ 8.87¢77 | 7.154e7 > £ 8.79¢77 ¥
Oscillation | 3.584e72 4+ 3.88¢7% | |3.561le 2 +3.91e7 % | 3.564e 2+ 3.63¢ ¢
Blowfly 5.137e 72 4 2.66e° 4.896e72 4 2,49¢7° 5.076e"2 £ 1.95¢°
TreeRings | 2.205e72£1.96e7% | 219872+ 1.97e7 %] | 2.217e 2 £ 1.88¢ ¢ ¥
Waves | 1106672 + 4.20e=0 | | 1.110e72+ 4.85¢7 | 2.012¢72 4592670 ¥

Boxes indicate the best result comparing only the proposed and the previous approach and black triangles indicate the cases where the LS-SVM obtains worse results than

the proposed one.

Table 3
Mean test MSE + standard deviation using hyperbolic tangent activation functions.
| Data set ] Proposed ] Previous [ LS8-SVM ]

Henon 2.090e~1 + 1.39¢=4 | [1.877¢~' + 1.79¢~*| | 1.900¢~! + 1.65¢~4
Lorenz 16.428¢=5 £ 3.13¢™7| | 7.944¢75 £ 5.85¢~7 | 6.899¢~ £ 8.87¢~7 ¥
Mackey 3.030e 2 +4.0le™® | 12.938¢72+4.42¢7°| | 3.210e 2+ 4.46e> ¥
Tkeda 1.726e= ! £ 2.10e~* 1.664e~ £ 3.0le | | 1.656e " & 2.56e*
Laser 4.234e7 +6.69¢77 | | 4.868¢ 4+ 1.16e % | 1.920e 2 £1.49¢ 5 ¥
DowlJones | {2979 *+847¢7%| | 4.499¢™* 4+ 2.40e™" | 2.862¢7° + 7.19¢"
Saubts 8.045¢=1 4 3.69¢~7 9.165e¢™* £ 7.06e7 | 1.111le * £ 4.75e~" ¥
Lmpavw 5.344e™* +2.61e™7| | 6.909e7* +6.91e™7 | 3.542e7* 4 1.96e 7
Annulus 3474e™* +3.19¢77| | 4.136e"* £6.59¢™7 | 5.408¢ 7 £ 2.80¢”" ¥
Kobe 5.999¢~1 4 6.14e7 6.444e 1 £ 1.05e7 % | 4.466e 2 £4.3le S ¥
Imports 1.247e 2 £1.66e~ 4| | 1.373e 2 +£2.44e % | 9.112e77 £ 8.45¢7°
Co2 1.925¢72 4+ 9.28¢ 6 2.332e73 £1.69¢7° | 7.257Te 24238 ° v
Oscillation | 3.624e™2 £ 6.39e~° 3.612e72 4+ 8.05e7" | | 3.602e=2 £ 5.92¢7°
Blowfly 5.401e2 +4.19¢~4 5.228¢7%2 +4.96e7*| | 5.275¢7% + 3.28¢ 74
TreeRings | 2.226e72 +£3.05e7° | |2.224e7 2 +4.32¢7°%| | 2.237e 2 +£2.94e 5 ¥
Waves ‘ 1.160e~2 + 7.30e 5 1.176e72 £8.22¢75 | 2.074e 2+ 1.11e™* ¥

Boxes indicate the best result comparing only the proposed and the previous approach and black triangles indicate the cases where the LS-SVM obtains worse results than

the proposed one.

for large-scale data sets for which a batch learning is not
possible. Also, it is important to remark that the solution
achieved by the method using an on-line or incremental
learning is exactly the same obtained in a batch mode.

In addition, Table 4 includes the mean CPU training time (in
milliseconds), and the associate standard deviation, for each data
set. The time required by the proposed method to obtain the
solution is considerably lesser than the LS-SVM method. This is
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global optimum of the objective function in just a step. Thereby,
the proposed method provides an interesting combination of
performance and speed.

4.2. Comparative study with other standard algorithms

In this experiment, the performance of the proposed method
was checked over 10 different binary classification problems and
compared to a representative set of learning methods. Table 5
shows the number of attributes and instances for each data set.
The first five data sets were obtained from the UCI Machine
Learning Repository [23] and the last five from the Data Mining
Institute of the University of Wisconsin [24]. Again, the topology

Table 4
Mean training time (in milliseconds) + standard deviation.

Data set Proposed Previous LS-SVM

Henon 21.406 + 6.425 8.531+4.033 9182.781 +52.210

Lorenz 20.969 +6.179 9.719 +4.706 5766.750 +68.715
Mackey 15.469 +4.653 6.563 +5.051 4115.469 +39.118
Ikeda 15.437 +5.608 6.500 +4.344 4094.219 + 31.606
Laser 14.000 +5.403 5438 +3.644 2883.594 +47.643
DowJones 24.750 +5.588 10.875+5.310 18387.906 + 180.961
Annulus 20.094 +6.894 9.500 +4.605 6478.344 +131.236
Kobe 20.906 +6.177 8.844 +4.856 9408.875 +67.977
Imports 3.375+3.099 1.656 +2.592 139.000 +8.370
Co2 4.781+3.871 2.562 +2.579 163.594 +8.263
Oscillation 8.594 +4.685 3.312+2972 1587.062 +20.166
Blowfly 3.188 +£2.544 2063 +2.197 158.687 +7.962
TreeRings 12.094 +7.368 5.063 +3.937 2157.219 +£50.177
Waves 4.344 +3.972 1.969 +2.599 128.969 +7.893
Lmpavw 10.514 +2.671 4.680 + 3.260 23015.296 + 143.183
Saubts 8.299 +3.342 3.058 +1.916 7673.752 +49.278
Table 5

Characteristics of the classification data sets.

Data set Attributes Instances
Wisconsin Diagnostic Breast Cancer 30 569
Pima data 8 768
Housing data 13 506
Iono data 34 351
Forest CoverType 55 5000
Curie data 499 22
Dim data 14 4192
Mush data 22 8124
Musk “Clean2” database 168 6598
Bright data 14 2462
Table 6
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of the network in each problem is determined by the dimension
the input and output data. The same activation functions
mentioned in the previous subsection were used but for the
same reason only one of them was included, in this case the
logarithmic sigmoid function.

The proposed method was compared with the following
efficient classifiers from the pattern recognition field:

e The LS-SVM method described in the previous section.

e The linear version of the proximal support vector machine
(PSVM) [25]. Although this algorithm is not so well-known as
the LS-SVM, its interest is given by the fact that it uses a
system of linear equations and exhibits good performance for
classification problems.

e The well-known Fisher linear discriminant (FLD) method. In
this study the implementation provided by the Statistical
Pattern Recognition Toolbox for Matlab [26] was used.

Table 6 shows the mean training accuracy (in percentage) and
standard deviation obtained for each data set over 50 different
simulations. Moreover, the number in brackets is the ranking
obtained by the method for each data set together. The last row of
the table contains the mean results considering all the data sets.
Table 7 shows the same results but for the mean test accuracy
(true accuracy estimated by cross-validation) and standard
deviation obtained for each data set. The best result for each
data set is underlined in each row of the table. The last row shows
the number of times that the proposed method wins and ties
against each of the other algorithms. Additionally, Table 8
contains the CPU training time (in milliseconds) employed by
each method for each fold of the 10-fold cross-validation.

Regarding the performance analysis, the following issues can
be observed:

e Considering the test accuracy of all the algorithms, it achieves
the greatest number of wins (4 of 10 data sets). In an individual
comparative analysis it obtains 7 wins and 1 tie in the best
case (Fisher) and 4 wins and 2 ties in the worst situation
(PSVM). In addition, it achieves the best mean accuracy
(86.43%) and the best mean ranking (2.0) for the test sets.
These results are only closely similar for the PSVM but this last
usually requires considerably more CPU time in order to get
the outcome of the learning process. Therefore, the proposed
method can be considered as a potential alternative to the
regular learning algorithms.

e The Fisher discriminant method obtains bad results in some
cases, e.g., lono, Curie and Forest data sets. This is due to
problems induced by ill-conditioned matrices for those data
sets.

Training mean accuracy + standard deviation for classification problems using logarithmic sigmoid activation functions.

Data set Proposed PSVM Fisher LS-SVM
BreastCancer 96.54 +0.06 [4] 95.65 +0.06 [2] 96.85 +£0.05 [1] 95.58 +0.05 [3]
Pimadata 7794 +0.07 [1] 77.93 +0.08 [2] 76.73 £ 0.09 [4] 77.82 +£0.08 [3]
Housingdata 86.20 £0.13 [3] 87.09+0.16 [1] 86.21 +£0.11 [2] 86.07 +0.11 [4]
Ionodata 90.73 £0.16 [1] 90.28 +0.18 [2] 35.90 +0.00 [4] 89.69 +0.13 [3]
Curiedata 100.00 +0.00 [1] 100.00 +0.00 [1] 46.60 4 16.36 [4] 99.21 +1.99 [3]
Dimadata 93.50 +£0.02 [1] 92.60+0.17 [3] 93.47 +0.02[2] 92.25+0.01 [4]
Mushdata 80.87 +£0.10 [3] 80.90 +0.10 [2] 62.05 +5.42 [4] 81.04 +0.07 [1]
Musk2 94.44 +0.01 [1] 94.43 +0.01 [3] 94.27 +0.02 [4] 94.44+0.01 [1]
Brightdata 97.35+0.01 [4] 97.42 +£0.04 [2] 97.84 +£0.01 [1] 97.42 +0.01 [2]
Forest 76.03 +0.03 [2] 76.0540.04 [1] 50.54 +0.00 [4] 75.87 +£0.04 [3]
Mean results 89.36 [2.1] 89.24 [1.9] 74.05 [3] 88.94 [2.7]

The number in brackets indicates the ranking of each learning method.
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Test mean accuracy + standard deviation for classification problems using logarithmic sigmoid activation functions.

Data set Proposed PSVM Fisher LS-SVM
BreastCancer 95.63 +£0.19 [2] 95.06 +£0.19 [4] 96.07 £0.22 [1] 95.19+0.24 [3]
Pimadata 7717 £0.38 [1] 77.13 £0.37 [2] 76.04 +0.36 [4] 77.09 +0.31 [3]
Housingdata 84.81 +£0.57 [3] 85.91 +£0.54 [1] 84.81 +£0.54 [3] 84.88 +0.46 [2]
Ionodata 86.60 +0.56 [2] 86.47 +£0.63 [3] 35.91 +£0.02 [4] 86.82 +0.58 [1]
Curiedata 79.27 +£4.35 [1] 79.27 +£4.35 [1] 50.40 4+ 12.47 [4] 70.10 +6.28 [3]
Dimadata 93.38 +£0.06 [1] 92.53 +£0.23 [3] 93.37 £0.06 [2] 92.21 +0.06 [4]
Mushdata 80.77 £0.12 [3] 80.79 +£0.11 [2] 62.02 +5.50 [4] 8090 +0.12 [1]
Musk2 93.91 +£0.06 [1] 93.91 +£0.07 [1] 93.66 +0.07 [4] 93.91 +0.06 [1]
Brightdata 97.27 +£0.06 [4] 97.33 £0.09 [3] 97.76 £ 0.06 [1] 97.37 +£0.05 [2]
Forest 7547 +£0.10 [2] 75.51 +0.08 [1] 50.54 +0.00 [4] 7538 +£0.13 [3]
Mean results 86.43 [2.0] 86.39 [2.1] 74.06 [3.1] 85.39 [2.3]
Wins/ties of the proposed vs ... 42 7/1 5/1

The number in brackets indicates the ranking of each learning method.

Table 8
Mean training time (in milliseconds) + standard deviation for classification
problems.

Data set Proposed PSVM Fisher LS-SVM

BreastCancer 14.0+4.7 163.8+4.8 104 +3.7 22956 +45.6
Pimadata 6.0+40 1673 +4.9 39+33 12347 +21.0
Housingdata 54+3.7 1738+5.2 44+35 1189.4 +23.0
Ionodata 19.8+49 1576446 224+5.7 545.6+8.9
Curiedata 4684.4+24.7 1373+47 425.0+85 21.8+44
Dimadata 27.7+43 1883 +52 21.0+38 28637.2 +206.4
Mushdata 53.6+54 1998 +5.6 764485 2536103 +9282.8
Musk2 551.3428.9 649.0+15.3 683.3 +30.2 4567293.2 + 28634.8
Brightdata 21.6+55 1753+74 13.3+49 38398.0 +1028.2
Forest 82.7+58 2197+90 1120457  238498.8 +6027.1

e Concerning the CPU time, the proposed method is usually the
fastest method only matched by the Fisher discriminant
method. Comparing the performance showed in Tables 6 and
7, it is observed that in general the proposed method obtains
better results than the FLD in similar CPU times.

e Compared with the LS-SVM. The proposed method presents a
similar performance to this approach but the training times are
much lesser. Of special interest is the result obtained for the
Musk2 data set, that contains a large number of examples and
attributes, for which the proposed method obtains a mean
performance equal to the LS-SVM, but using less than 1s of
CPU time, while LS-SVM needs more than 1h. Thereby, the
proposed method provides an interesting combination of
performance and speed.

5. Conclusions

Current methods for learning the weights in single-layer
neural networks have the following shortcomings:

e The objective function to be optimized can have several
(usually many) local optima. This implies that the users cannot
know whether or not they are in the presence of a global
optimum, and how far from it the local optimum resulting
from the learning process is.

e The learning process requires a large amount of computational
time for large data sets and networks.

In this work a new supervised learning method for single-layer
feedforward neural networks was proposed. This approach is
based on a new objective function that measures the errors before
the nonlinear function instead of after this function, as usual, and

scales the errors according to the corresponding operation point
of the nonlinearity. This leads to a convex objective function
which global optimum can be easily obtained using a square
system of linear equations. It was experimentally verified that this
method can improve, in many cases, the performance of the
previous approaches that do not scale the errors measured before
the activation functions.
The main features of the proposed learning method are:

e The global optimum obtained is approximately equivalent to
the one of the MSE measured after the activation functions.
This equivalence was proved employing a first order Taylor
series approximation. In general, for more accurate results one
may want to use more terms in the Taylor series expansion.
However, this brings in the higher order moments of the error,
which makes impossible the use of a system of linear
equations. Anyway, as it was verified in the experimental
simulations, the proposed approach obtains a close approx-
imation to the global optimum of the regular MSE. If for any
reason, it would be necessary to get a more exact solution, the
weights provided by the proposed algorithm could be used as
an initial state of any standard learning algorithm, for instance,
the Scaled Conjugate Gradient or the Levenberg-—Marquart
method.

e The employed alternative objective function based on the MSE,
measured before the nonlinear activation functions, is strictly
convex and thus the absence of local minima is ensured.

e [t allows an incremental and distributed learning.

o It exhibits a fast operation, with a complexity of O(N?) being N
the number of weights of the network.
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