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Abstract 

This study applies a sliding-mode-based neural network to 
control inverted pendulum systems. Neural network 
weights are updated using a cost function which denotes 
distance from the sliding manifold. Thus, minimizing the 
cost function equals reaching the sliding surface. Sliding 
mode based neural network also makes the system robust to 
uncertainties in parameters and dynamical uncertainties. 
Chattering effect is solved by modifying the cost function. 
Simulations are fulfilled for a SISO and a MIMO model of an 
inverted pendulum. The results of simulations reveal the 
effectiveness of proposed method. 
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Introduction 

Due to hardship in obtaining control efforts in some 
applications, adaptive controllers like neural networks 
have been widely used [Bose (2007)]. In a neural 
controller, weights which construct the control effort 
are updated in order to minimize a cost function. One 
way to combine good features of classical control 
theory with neural networks is deriving a cost 
function which yields classical control goals. Cost 
function can be depicted as distance from a sliding 
manifold. This way, minimizing cost function is equal 
to approaching desired state values. 

One drawback of sliding mode control is the 
chattering effect. The chattering is generally 
undesirable because it involves extremely high control 
activities and may excite high-frequency dynamics 
neglected in modelling [Slotine & Li (1991)]. 

In [Yildiz et al. (2007)], the signal control obtained 
from ADALINE neural network is updated using a 
cost function which denotes distance from the sliding 
manifold. Thus, merge good features of sliding mode 
and neural network. The method is applied to physical 

model of the linear servo drive. 

In [Wang et al. (2002)], a supervisory controller is 
appended into the FNN controller to force the states to 
be within the constraint set. Therefore, if the FNN 
controller cannot maintain the stability, the supervisory 
controller starts working to guarantee stability. On the 
other hand, if the FNN controller works well, the 
supervisory controller will be deactivated. The method 
is applied to an inverted pendulum system. We use 
this system for our simulations. 

Recently [Kayacan et al. (2013)], the control of a 
spherical rolling robot by using an adaptive neuro-
fuzzy controller in combination with a sliding-mode 
control (SMC)-theory-based learning algorithm has 
been presented. The proposed control structure 
consists of a neuro-fuzzy network and a conventional 
controller which is used to guarantee the asymptotic 
stability of the system in a compact space. 

In this study the sliding-mode-based neural controller 
is applied to SISO and MIMO model of an inverted 
pendulum. The cost function is derived from 
Lyapunov stability criteria. As the cost function 
becomes smaller, outputs tend to the desired values 
and weights updating decreases. Simulations are 
brought afterwards. 

This paper is organized as follows: Problem 
statements given in Section 2. Section 3 presents the 
structure of neural network. Simulation examples to 
demonstrate the performance of the proposed method 
is provided in Section 4. Section 5 gives the 
conclusions of the advocated design methodology. 

Problem Statement 

Model of the System 

In this paper dynamics of a system including m 
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subsystems is considered. Dynamics are described by 
yi
ni-1 = hi + biui + gi, where𝑦𝑖

𝑙𝑖 is the lth derivative of 𝑦𝑖 
considering 𝑥 = [𝑦1, 𝑦̇1, … ,𝑦1

𝑛𝑖−1, … ,𝑦𝑚, 𝑦̇𝑚, … ,𝑦𝑚
𝑛𝑖−1]𝑇  as 

state vector. The subsystems can be described as 
follows: 

𝑥̇ = 𝑓(𝑥) + 𝐵(𝑥) + 𝑑                                (1) 

In which 𝑥𝑇 ∈ ℜ𝑛  is the state vector, 𝑛 = ∑ 𝑛𝑖𝑚
𝑖=1 , 

𝑢 ∈ ℜ𝑚 is the control vector and 𝑓(𝑥) ∈ ℜ𝑛  is an 
unknown, bounded and continuous function. 𝐵(𝑥) ∈
ℜ𝑛𝑥𝑚 is the input matrix, with continuous and 
bounded elements and 𝑟𝑎𝑛𝑘�𝐵(𝑥)�|∀𝑥 = 𝑚 . 𝑑 ∈ ℜ𝑛 
describes output disturbance, assumed  bounded. All 
elements of 𝑓(𝑥) ∈ ℜ𝑛 and 𝑑 ∈ ℜ𝑛 are bounded. Fully-
actuated mechanical systems can be described in the 
form of equation (1). 

Control Design 

Control law is derived from SMC structure. First, an 
appropriate sliding mode is selected to ensure 
dynamics’ convergence to desired values. Control 
signal should be derived such that Lyapunov 
conditions are satisfied. Selecting the Lyapunov 
function using sliding mode is a natural and 
reasonable approach to get to the desired control goals 
that is tracking desired trajectory. 

Sliding mode 

For system described in equation (1), one choice for 
the sliding mode is 

σ = 𝐺𝑒𝑡 = 0                                                   (2) 
The tracking error vector is defined as 𝑒𝑡 =

�𝑒1, … , 𝑒1
(𝑛1−1), … , 𝑒𝑚, … , 𝑒𝑚

(𝑛𝑚−1)�
𝑇
∈ ℜ𝑛 , in which 𝑒𝑖 =

𝑦𝑑𝑖 − 𝑦𝑖 , 𝜎𝜎 = [𝜎𝜎1, … ,𝜎𝜎𝑚]𝑇 ∈ ℜ𝑚  and𝐺 ∈ ℜ𝑚×𝑛 . Matrix 
𝐺has to be Hurwitz, to damp tracking error and its 
derivatives. Thus each elements of the vector 𝜎𝜎(𝑒)is a 
function of output error. 𝜎𝜎𝑖 = ∑ 𝑎𝑖𝑗𝑒𝑖

(𝑗)𝑛𝑖−1
𝑗=1  with𝑎𝑖𝑗 >

0,𝑎𝑖1 = 1 describes function of tracking error and its 
derivatives, which has some roots in left half of s plane. 

Deriving Control Signal 

One Lyapunov function candidate is: 

𝑉 = 1
2
𝜎𝜎𝑇𝜎𝜎                                                        (3) 

where 𝑉 ∈ ℜ . We can also assume 𝑉 = (1/2)‖𝜎𝜎‖22  in 
which ‖. ‖2  reveals Euclidean norm with initial 
condition𝑉(0) = 0. Time derivative of the Lyapunov 
function has to be negative definite to ensure stability. 
We can equate 𝑉̇  to a negative definite function, as 
following: 

𝑉̇ = −𝜎𝜎𝑇𝐷𝜎𝜎 − 𝜇𝜇
𝜎𝜎𝑇𝜎𝜎
‖𝜎𝜎‖2

                                         (4) 

𝐷 is a symmetric positive definite matrix and 𝜇𝜇 > 0. 
Replacing (3) in (4), we have 

𝜎𝜎𝑡 �𝜎̇𝜎 + 𝐷𝜎𝜎 + 𝜇𝜇
𝜎𝜎

‖𝜎𝜎‖2
� = 0                                (5) 

For𝜎𝜎 ≠ 0, the control law is derived from: 

�𝜎̇𝜎 + 𝐷𝜎𝜎 + 𝜇𝜇
𝜎𝜎

‖𝜎𝜎‖2
� = 0                                    (6) 

Thus sliding mode conditions are satisfied. 
Discontinuous term should be small enough in order 
to prevent the chattering effect in SMC. Because 
simulations are performed in discrete form, we can 
neglect the discontinuous term. Thus control signal is 
selected such that(𝜎̇𝜎 + 𝐷𝜎𝜎) = 0. For further analysis, 
(𝐷𝜎𝜎) can be replaced by(𝐷𝜎𝜎 + 𝜇𝜇𝜎𝜎/𝜎𝜎𝑇𝜎𝜎). 

For a system in the form of (1) and a sliding surface as 
(2), a control signal satisfying (𝜎̇𝜎 + 𝐷𝜎𝜎) = 0is: 

𝒖 = −(𝐺𝐵)−1�𝐺�𝑓 + 𝑑 − 𝑥̇𝑑𝑖� − 𝐷𝜎𝜎� = 𝑢𝑒𝑞 + (𝐺𝐵)−1𝐷𝜎𝜎    (7) 

Where𝑥𝑑 = �𝑦𝑑1 , … ,𝑦𝑑1
(𝑛1−1), … ,𝑦𝑑𝑚 , … ,𝑦𝑑𝑚

(𝑛𝑚−1)�
𝑇

, 𝑢𝑒𝑞  is 
called equivalent control and is derived from𝜎̇𝜎 = 0. 

In most of the works in literature which are combined 
Neural Networks with SMC, 𝑢𝑒𝑞  is derived from a 
neural network [Kaynak et al. (2001), Morioka et al. 
(1995), Jezernik et al. (1997)]. Though, here we use a 
one-layer MLP network to get the whole control signal. 

Neural Network Structure 

One Layer MLP 

The structure used for the neural network in this study 
is shown in fig. 1. 

 
FIG. 1 NEURAL NETWORK STRUCTURE 

𝑒𝑡𝑖 is the ith row of 𝑒𝑡vector,𝑤𝑖𝑗shows weight between 
the ith and the jth nodes and𝑤𝑖0denotes bias term. 
Control inputs are defined as: 
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𝑢𝑖 = �𝑒𝑡𝑖𝑤𝑖𝑗

𝑛

𝑗=1

+ 1𝑤𝑖0,            𝑖 = 1, … ,𝑚.          (8) 

In fig. 1 activation functions are linear and the neural 
network is static. Equation (8) denotes a PD controller 
for a second-order system. For higher order systems, it 
denotes a state feedback controller. From (8), when 
tracking errors are zero, control signal equals the bias 
term, which rejects disturbance effect. 

In this paper, weights update is selected such that(𝜎̇𝜎 +
𝐷𝜎𝜎) = 0. Thus Lyapunov conditions are satisfied. The 
cost function used is as follows: 

𝑬 =
1
2

(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇(𝜎̇𝜎 + 𝐷𝜎𝜎)                           (9) 

As 𝐸 → 0  with weights update, (𝜎̇𝜎 + 𝐷𝜎𝜎) = 0  is 
satisfied, the states move on the sliding surface and 
converge to the desired values. 

Control law is derived from SMC structure. First, an 
appropriate sliding mode is selected to ensure 
dynamics’ convergence to desired values. Control 
signal should be derived such that Lyapunov 
conditions are satisfied. Selecting the Lyapunov 
function using sliding mode is a natural and 
reasonable approach to get to the desired control goals 
which is tracking desired trajectory. 

Updating Weights 

Weights are updated as following: 

𝑤̇𝑖𝑗 = −𝜂𝜂
𝜕𝐸
𝜕𝑤𝑖𝑗

                                          (10) 

𝜂𝜂 > 0 is the learning coefficient. Using Chain rule, we 
have 

𝑤̇𝑖𝑗 = −𝜂𝜂
𝜕𝐸
𝜕𝑢𝑖

𝜕𝑢𝑖
𝜕𝑤𝑖𝑗

                                      (11) 

𝑤̇𝑖𝑗 = −𝜂𝜂(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇
𝜕𝜎̇𝜎
𝜕𝑢𝑖

𝑒𝑡𝑗                          (12) 

𝑤̇𝑖𝑗 = −𝜂𝜂(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇
𝜕(𝐺𝑥̇𝑑 − 𝐺𝑥̇)

𝜕𝑢𝑖
𝑒𝑡𝑗            (13) 

If we rewrite equation (1) as 

𝑥̇ = 𝑓(𝑥) + [𝐵1(𝑥) ⋮ ⋯ ⋮ 𝐵𝑚(𝑥)] �
𝑢1
⋮
𝑢𝑚

� + 𝑑             (14) 

Replacing (14) in (13) concludes 

𝑤̇𝑖𝑗 = −𝜂𝜂(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇𝐺𝐵𝑖(𝑥)𝑒𝑡𝑗                      (15) 
For updating bias weights, 𝑤𝑖0, we have 

𝑤̇𝑖0=𝜼(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇𝐺𝐵𝑖(𝑥)                                (16) 
If we select nonlinear activation functions instead of 
linear ones, updating weights is similar to the above 
procedure, though updating terms are multiplied by 

the derivative of the activation function, that is 
𝑤𝚤𝚥̇ = 𝜂𝜂(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇𝑔̇𝑖𝐺𝐵𝑖(𝑥)𝑒𝑡𝑗. 

In the above approach when the cost function equals 
zero, that is (𝜎̇𝜎 + 𝐷𝜎𝜎) = 0 , updating stops and the 
states reach the desired values. In [Yildiz et al. (2007)], 
It is shown that the minimum of cost function is global, 
because the second derivative of cost function always 
stays positive. 

Stability 

The Lyapunov candidate is selected as 

𝑽 =
1
2

(𝜎̇𝜎 + 𝐷𝜎𝜎)𝑇(𝜎̇𝜎 + 𝐷𝜎𝜎)                                   (17) 
It can be easily shown that𝑉 > 0, while(𝜎̇𝜎 + 𝐷𝜎𝜎) ≠ 0. 
When(𝜎̇𝜎 + 𝐷𝜎𝜎) = 0 , we have𝑉 = 0 . Differentiate the 
above equation, we have 

𝑉̇ = −��
𝜕𝑉
𝜕𝑤𝑖𝑗

𝑑𝑤𝑖𝑗
𝑑𝑡

𝑛

𝑗=0

+ 𝑔(𝛾)𝛾̇
𝑚

𝑖=1

                         (18) 

𝑔(𝛾) is the derivative of 𝑉  on other parameters. 
Replacing (10) in (24), we have  

𝑉̇ = −���
𝜕𝑉
𝜕𝑤𝑖𝑗

�
2𝑛

𝑗=0

+ 𝑔(𝛾)𝛾̇
𝑚

𝑖=1

                       (19) 

To ensure stability, learning rate should be chosen 
large enough. Thus, derivative of Lyapunov function 
will be negative definite, 𝑉̇ < 0.  

Simulations 

SISO Case 

Here we will apply sliding-mode-based neural 
controller for two cases. First we consider SISO case 
with an inverted pendulum system that is shown in fig. 
2 [Wang et al. (2002)].  

 
FIG 2 THE INVERTED PENDULUM SYSTEM 

If we choose𝑥1 = 𝜃to be the angle of the pendulum 
with respect to the vertical line, the dynamic equations 
of the inverted pendulum system are 

(20) 
�𝑥1̇𝑥2̇

� = �0 1
0 0� �

𝑥1
𝑥2� + �01�

(𝑓 + 𝑔𝑢 + 𝑑) 

𝒚 = [1   0] �
𝑥1
𝑥2� 
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Where 

(21) 

𝒇 =
𝑔𝑣 sin 𝑥1 − (𝑚𝑙𝑥22 cos 𝑥1 sin 𝑥1)

𝑙 �4
3
− 𝑚cos2 𝑥1

𝑚𝑐+𝑚
�

 

𝒈 =

cos 𝑥1
𝑚𝑐+𝑚

𝑙 �4
3
− 𝑚cos2 𝑥1

𝑚𝑐+𝑚
�

> 0 

𝑔𝑣 = 9.8 𝑚𝑒𝑡𝑒𝑟/(sec2) is the acceleration due to 
gravity, 𝑚𝑐 is the mass of the cart,𝒍 is the half-length of 
the pole, 𝑚 is the mass of the pole and 𝑢 is the control 
input. Here, we assume 𝑚𝑐 = 1𝑘𝑔 , 𝑚 = 0.1𝑘𝑔  and 
𝑙 = 0.5  meter. For implementing sliding-mode-based 
neural controller on this continuous system, we should 
discretize it with a proper sampling time. Thus, 
updating states would be as following: 

𝑿(𝑘 + 1) = 𝑋(𝑘) + 𝑇𝑠 × 𝑑𝑋(𝑘 + 1)                  (22) 
Structure of system with controller is shown in fig. 3. 
Desired trajectory for angle of pendulum is a sinusoid. 
We assume that the neural network is a one-layer 
linear network. To control the angle of pendulum, the 
sliding manifold is chosen as 𝜎𝜎 = 𝑒̇ + 𝐶𝑒 , where 
𝑒 = 𝜃𝑟 − 𝜃 refers to the error in angle of pendulum. We 
select controller parameters as𝐶 = 2, 𝐷 = 2 and𝜂𝜂 = 0.1, 
and the sampling time 𝑇𝑠 = 0.001𝑠. 

 
FIG. 3 STRUCTURE OF SYSTEM WITH CONTROLLER 

 

FIG 4 TRACKING ANGLE OF PENDULUM 

 

FIG 5 TRACKING ANGULAR VELOCITY OF PENDULUM 

 

FIG 6 TRACKING ERROR OF PENDULUM 

 

FIG 7 CONTROL INPUT APPLIED TO CART 

Figs. 4-7 show the response of the system to the 
sinusoid reference input for angle. Fig. 4 shows the 
output trajectory 𝜃 and reference output𝜃𝑟, where the 
reference trajectory is tracked perfectly and error is 
hardly noticeable. Fig. 5 shows the second state of the 
system, which is angular velocity of pendulum and 
tracked perfectly similar to angle of pendulum. Fig. 6 
shows the tracking error in logarithmic axis. It can be 
seen, error decreases fast during tracking and remains 
in a limit bound for steady-state. In fig. 7 the control 
signal is shown, that is seen to be smooth.  

The presented results show that sliding-mode neural 
controller works suitably, and the states converge to 
sliding surface properly. This convergence is achieved 
by a simple weight update algorithm and an uncertain 
system with limited knowledge on system parameters. 

MIMO Case 

In MIMO case, we consider two inverted pendulums 
connected by a moving spring mounted on two carts 
(fig. 8) [Yang et al. (2010)]. In this system position of 
the pivot in moving spring is a function of time, which 
can change along the full length 𝑙 of the pendulums. 
The inputs of the system are torque 𝑢𝑖 applied at the 
pivot point of each pendulum. The motion of carts is 
assumed to be sinusoid trajectories. Each pendulum is 
assumed as a decoupled subsystem of the whole 
system. The objective is to control the angle of each 
pendulum with only its information so that each 
pendulum tracks its own desired reference trajectory 
while the connected spring and carts are moving. 

If we define𝒙𝑖 = �𝜃𝑖 , 𝜃̇𝑖�
𝑇 = [𝑥𝑖1, 𝑥𝑖2]𝑇 , 𝑖 = 1,2 , as the 

systems states, the dynamical equations of the coupled 
pendulums can be described as following: 

𝒙1̇ = �
0 1

𝑔
𝑐𝑙 −

𝑘𝑎(𝑡)(𝑎(𝑡) − 𝑐𝑙)
𝑐𝑚𝑙2 0� 𝒙1 + �

0
1

𝑐𝑚𝑙2
� 𝑢1

+ �
0 0

𝑘𝑎(𝑡)(𝑎(𝑡) − 𝑐𝑙)
𝑐𝑚𝑙2

0� 𝒙2

− �
𝑚
𝑀 sin(𝑥11) 𝑥122

+
𝑘(𝑎(𝑡) − 𝑐𝑙)

𝑐𝑚𝑙2
(𝑦1 − 𝑦2)� 

(23) 
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𝒙2̇ = �
0 1

𝑔
𝑐𝑙 −

𝑘𝑎(𝑡)(𝑎(𝑡) − 𝑐𝑙)
𝑐𝑚𝑙2 0� 𝒙2 + �

0
1

𝑐𝑚𝑙2
� 𝑢2

+ �
0 0

𝑘𝑎(𝑡)(𝑎(𝑡) − 𝑐𝑙)
𝑐𝑚𝑙2

0� 𝒙1

− �
𝑚
𝑀 sin(𝑥21) 𝑥222

+
𝑘(𝑎(𝑡) − 𝑐𝑙)

𝑐𝑚𝑙2
(𝑦2 − 𝑦1)� 

(24) 

 
FIG 8 THE COUPLED DOUBLE INVERTED PENDULUM 

Where 𝐶 = 𝑀/(𝑀 + 𝑚),𝑘 and 𝑔 are spring and gravity 
constants and 𝑢1  and 𝑢2  are pendulums control 
torques. We choose 𝑔 = 9.8, 𝑙 = 1, 𝑘 = 1, 𝑀 = 𝑚 = 4 
for simulations. The motions of the carts are assumed 
to be sinusoids, that is 𝑦1 = sin(𝜔𝜔1𝑡)  and 𝑦2 = 𝐿 +
sin (𝜔𝜔2𝑡), where L is the natural length of the spring 
and 𝜔𝜔1 ≠ 𝜔𝜔2. Here, we select 𝜔𝜔1 = 2 , 𝐿 = 2 and𝜔𝜔2 = 3. 
Also, we choose 𝑎(𝑡) = sin 5𝑡 . Considering 𝑋 =
[𝒙1,𝒙2]𝑇 = �𝜃1, 𝜃̇1,𝜃2, 𝜃̇2�

𝑇  as the whole system states, 
we can reach the standard form of equation (1). 

Again we consider sine-wave trajectories as desired 
angle of pendulums. We also assume one-layer linear 
network for sliding-mode-based neural controller. The 
sliding manifold for the first subsystem is chosen as 
𝜎𝜎1 = 𝑒̇1 + 𝐶𝑒1, where 𝑒1 = 𝜃1𝑟 − 𝜃1 refers to the error in 
angle of first pendulum. For the second subsystem the 
sliding manifold is chosen as 𝜎𝜎2 = 𝑒̇2 + 𝐶𝑒2 , where 
𝑒2 = 𝜃2𝑟 − 𝜃2 refers to the error in angle of the second 
pendulum. We select controller parameters as 𝐶 = 2, 
𝐷 = �2 1

1 2�, which is positive definite,𝜂𝜂 = 0.4, and the 

sampling time 𝑇𝑠 = 0.001𝑠.Both references are applied 
at the same time. 

Figs. 9-14 show the response of the system to the sine-
wave reference for each angle. As shown in Figs. 9-10, 
the output trajectory 𝜃1 tracks the reference output 𝜃1𝑟 
perfectly, while simultaneously output trajectory 𝜃2 
tracks the reference output𝜃2𝑟 . Figs. 11-12 show the 
second states of the subsystem, angular velocity of 
each pendulum, which are tracked perfectly similar to 

the angle of pendulums. Fig. 13 shows the tracking 
error in logarithmic space, which remains bounded in 
steady-state. As it is seen in fig. 14 the control signals 
are bounded and well-behaved. 

The presented results show that sliding-mode-based 
neural controller works suitably for MIMO systems, 
where decoupled and interaction terms are assumed 
disturbance. All the states converge to sliding surface 
properly, and also the system is capable of coping 
with harmonic changes in references. 

 
FIG 9 TRACKING ANGLE OF FIRST PENDULUM 

 
FIG 10 TRACKING ANGLE OF SECOND PENDULUM 

 
FIG 11 TRACKING ANGULAR VELOCITY OF FIRST PENDULUM 

 

FIG 12 TRACKING ANGULAR VELOCITY OF SECOND 
PENDULUM 

 
FIG 13 TRACKING ERRORM OF PENDULUMS 
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FIG 14 CONTROL INPUTS APPLIED TO EACH PENDULUM 

Conclusion 

In this paper a neural network based on sliding mode 
is proposed for an inverted pendulum. Weight 
adaptation in the neural network uses a cost function 
derived from Lyapunov stability criteria. The aim in 
this study is to develop a learning method for 
parameters of neural controller that not only can be 
applied without the need for calculating Jacobean of 
plant but also guarantees stability and robustness of 
the learning approach. According to the simulations 
for SISO and MIMO case, good tracking characteristics 
in outputs are obtained. 
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